Posts

How to Conduct Slew bearing Diagnosis

The operating state of bearings affects the performance of equipment and production efficiency. It is crucial to select an appropriate fault diagnosis method, and the selection of the diagnosis method also needs to be considered comprehensively.

What is the feature of Slew bearings?

Slew bearings are key components in mechanical transmission and have many distinct characteristics. Structurally, rolling slew bearings generally consist of an inner ring, an outer ring, rolling elements, and a cage, with each part working in coordination; sliding slew bearings mainly include a slew bearing housing and a slew bearing bush. In terms of performance, they can effectively reduce the friction between moving parts and improve mechanical efficiency. They also have a high load – carrying capacity and can withstand radial and axial loads. Slew bearings are available in different accuracy grades to meet the diverse requirements of equipment, from common to high – precision ones. Moreover, slew bearings have good rotational stability, ensuring the stable operation of equipment, and are widely used in various mechanical fields such as automobiles, machine tools, and motors.

Determine Strategies Based on Equipment Characteristics

The fectures of the equipment itself are the fundamental basis for choosing a diagnosis method. Regarding speed and load, slew bearing failures in high – speed equipment can cause high – frequency vibrations. The vibration analysis method, with its ability to capture high – frequency signals, is an ideal choice for such equipment. For example, in a gas turbine, where the slew bearing rotates at an extremely high speed, high – sensitivity acceleration sensors installed at key positions can collect vibration signals in real – time. Through signal processing techniques such as the Fast Fourier Transform, the vibration spectrum can be analyzed to accurately identify slew bearing fault types, such as early wear of the balls and fatigue cracks in the raceways. For heavy – load equipment, like the hoist of a large – scale mining machine, which endures huge pressure for long periods, the slew bearings are prone to problems such as wear and plastic deformation due to overloading. In this case, the combined use of the temperature monitoring method and the oil analysis method can be very effective. Temperature monitoring can promptly detect slew bearing overheating caused by excessive load, while oil analysis can detect the concentration and composition of metal particles in the oil due to wear, enabling the determination of the wear degree and location of the slew bearing.

Make Choices According to the Working Environment

The working environment significantly affects the applicability of diagnosis methods. In high – temperature environments, such as the slew bearings of blast furnace fans in the metallurgical industry, the conventional oil analysis method may produce errors due to the impact of high temperature on the oil performance. In this case, the vibration analysis method and the temperature monitoring method based on infrared technology are more reliable. Infrared thermal imagers can measure the surface temperature of slew bearings from a distance and non – contact, quickly identifying areas with abnormal temperatures. In humid or corrosive environments, such as the slew bearings of chemical equipment, the slew bearings are prone to corrosion failures. Although the visual inspection method can directly observe surface corrosion signs, it is difficult to detect internal corrosion. However, the combination of the vibration analysis method and the ultrasonic testing method can effectively make up for this deficiency. Ultrasonic waves can penetrate the slew bearing material to detect internal micro – defects and the degree of corrosion.

Select Methods According to Fault Types

Different fault types require targeted diagnosis methods. For early – stage faults, the vibration analysis method and the acoustic detection method have unique advantages. Early – stage slew bearing wear, fatigue damage, and other faults can cause weak abnormal vibrations and sound signals during slew bearing operation. Through high – resolution vibration sensors and high – sensitivity acoustic sensors, combined with advanced signal processing algorithms, these subtle changes can be captured. For example, wavelet transform can be used to decompose the vibration signal to extract early – stage fault features and achieve early – warning of faults. The oil analysis method can also play a role in early – stage detection. By analyzing the number, shape, and composition of wear particles in the oil, the wear trend of the slew bearing can be detected in advance.

The diagnosis of sudden faults relies more on methods that can respond quickly. When sudden faults such as part breakage or jamming occur in a slew bearing, the vibration analysis method will detect a sharp increase in the vibration amplitude and a mutation in the frequency components. At the same time, the temperature monitoring method can also detect an instant increase in temperature. These abnormal signals can be quickly alerted through an automated monitoring system, enabling operators to take timely measures to prevent the accident from escalating.

Make Decisions by Weighing Cost – Benefit

Cost – benefit is an important factor that enterprises must consider when choosing a diagnosis method. From the perspective of initial investment, vibration analysis equipment, high – precision oil testing instruments, etc., are expensive. For small and medium – sized enterprises with limited funds or some application scenarios with low requirements for equipment accuracy, such as the ventilation equipment in small factories, it is more practical to use the cost – effective visual inspection method and simple temperature monitoring devices. Considering maintenance costs, the oil analysis method requires regular sampling, sending for inspection, and consuming chemical reagents, which can be costly in the long run; the sensors used in the vibration analysis method need to be calibrated and maintained regularly, also incurring certain costs. Therefore, enterprises need to comprehensively consider the importance of the equipment, the potential losses caused by faults, and the maintenance budget to weigh and choose a suitable diagnosis method.

Arrange Reasonably by Referring to Personnel Skills

The skill level of personnel is also a factor that cannot be ignored. Diagnosis methods such as vibration analysis and oil analysis require professional technicians to collect, analyze, and interpret data. For enterprises lacking professional talents, complex diagnosis methods may not be effectively utilized. In this case, it is more appropriate to choose simple – to – operate and easy – to – understand methods such as visual inspection and temperature monitoring. At the same time, enterprises can improve personnel skills through internal training and external further education to gradually introduce more advanced diagnosis methods.

Select Means by Matching Diagnosis Accuracy

The requirement for diagnosis accuracy determines the level of method selection. For equipment with extremely high accuracy requirements, such as aero – engines and lithography machines, a single diagnosis method is difficult to meet the needs. It is necessary to comprehensively use multiple high – precision methods. The vibration analysis method combined with the oil analysis method, supplemented by non – destructive testing techniques such as X – ray flaw detection and ultrasonic flaw detection, can comprehensively monitor the slew bearing status from multiple dimensions to ensure the safe and reliable operation of the equipment. For general industrial equipment, such as ordinary motors and reducers, under the premise of meeting basic production requirements, relatively simple diagnosis methods can be used to ensure the diagnosis effect while reducing costs.

Determine the Method by Combining Real – Time Monitoring

The need for real – time monitoring varies according to the operating characteristics of the equipment. For key equipment that operates continuously and does not allow downtime, such as the slew bearing of the reactor agitator in a large – scale petrochemical plant, real – time online monitoring methods must be adopted, such as the vibration monitoring system based on the Internet of Things and the real – time oil monitoring system, to ensure that potential fault hazards can be detected in a timely manner. For intermittent – operation equipment, such as tower cranes on construction sites, regular inspections and detections can be carried out. Visual inspections, vibration detections, and oil analyses can be performed during equipment downtime intervals to rationally allocate monitoring resources and improve monitoring efficiency.

The accessibility of the equipment also affects the implementation of the diagnosis method. For slew bearings that are easily accessible, such as the sliding slew bearings on machine tool guides, simple methods such as visual inspection and manually feeling the temperature can be directly used for daily inspections. For slew bearings installed in enclosed spaces, at heights, or in dangerous areas, such as the main pump slew bearings of nuclear power plants, non – contact and remote – operation diagnosis methods are required. For example, robots equipped with detection equipment can be used for vibration detection, and remote infrared monitoring systems can be used for temperature monitoring to ensure the safe and efficient progress of the diagnosis work.

Choosing a suitable slew bearing fault diagnosis method for a specific application is a process of comprehensively considering multiple factors. Enterprises need to weigh the pros and cons based on factors such as equipment characteristics, fault types, cost – benefit, personnel skills, diagnosis accuracy, real – time monitoring requirements, and equipment accessibility, and make scientific decisions. When necessary, a comprehensive diagnosis strategy combining multiple methods can be adopted to achieve accurate diagnosis and effective prevention of slew bearing faults, ensuring the stable operation of equipment and enhancing the production efficiency and competitiveness of enterprises.

The Price of Slew bearings

The price of slew bearings is affected by many factors. Firstly, it is the type. Deep – groove ball slew bearings have a simple structure and a large usage volume, so their prices are affordable; tapered roller slew bearings can withstand combined loads, and their manufacturing process is complex, resulting in relatively high prices. The size specification is also crucial. Large – sized slew bearings require more materials and are difficult to manufacture. For example, large – sized slew bearings used in wind power equipment are expensive; the opposite is true for small – sized slew bearings. In addition, the higher the accuracy grade, the more stringent the processing requirements, and the more expensive the price.

Supplier of Slew bearing

LDB bearing will continue to adhere to the corporate vision of “meticulous manufacturing, serving the world”, continuously increase investment in research and development, improve product quality and technical levels, expand market areas, strengthen international cooperation, and strive towards the goal of becoming a world – class slew bearing manufacturer. It is believed that with the joint efforts of all employees of LDB slew bearing, this enterprise, which carries numerous honors and dreams, will surely write an even more glorious chapter in the industrial slew bearing field and make greater contributions to the development of the global industry.

How to Distinguish Slew Bearings of Different Precision Levels

Precision grades are established according to ISO standards. However, due to variations in national standards, their nomenclature may differ significantly.

What is slew bearing?

Slew Bearings can significantly reduce the friction between mechanical components, making the operation smooth and reducing energy consumption. They have a strong load – bearing capacity and can handle axial and radial loads. With high precision, they ensure the stable operation of equipment, can adapt to complex working conditions such as high temperature and high speed, and are extremely widely applied.

Basic Classification of Slewing Bearings

The precision grades of bearings are primarily classified based on dimensional accuracy and rotational accuracy. These grades are standardized into six levels: 0, 6X, 6, 5, 4, and 2, with precision increasing sequentially from grade 0. Details are as follows: 

Grade 0: Widely used in general bearing systems with rotational accuracy greater than 10 μm, such as gearboxes and feed mechanisms in ordinary machine tools, automotive and tractor transmissions, general-purpose motors, pumps, and agricultural machinery. 

Grades 6 and 5: Suitable for bearing systems requiring rotational accuracy between 5–10 μm or higher speeds, such as the front support (grade 5) and rear support (grade 6) of lathes, precision instruments, and high-precision rotating mechanisms. 

Grades 4 and 2: Used in ultra-precision systems with rotational accuracy below 5 μm or extremely high speeds, such as precision coordinate boring machines, gear systems in precision grinders, high-precision instruments, and high-speed cameras. 

Application Scenarios for Different Bearing Types by Precision Grade 

Deep Groove Ball Bearings.P0: General industrial equipment (e.g., motors, fans, pumps, reducers) with low precision and speed requirements.  P6: Automotive engines, wind turbines, precision pumps—suitable for moderate speed and precision. P5 and above High-speed turbines, industrial robots, and other high-speed, precision equipment. 

Angular Contact Ball Bearings P0: Ordinary rotating mechanisms with low precision demands.P6: Machine tool spindles, high-speed motors—enhances precision.P5: Precision machine tools, optical instruments—ensures high rotational accuracy and rigidity. P4 and above: Aerospace, semiconductor manufacturing—extremely high precision and speed. 

Self-Aligning Ball Bearings. P0: Motors, agricultural machinery, automotive transmissions—tolerates moderate misalignment.P6 and above**: Precision instruments requiring stability. 

Self-Aligning Roller Bearings  P0: Heavy machinery (e.g., crushers, vibrating screens, paper mills)—handles large radial and axial loads.P6 and above: High-precision equipment (e.g., rolling mills)—ensures stability and reliability. 

Tapered Roller Bearings.P0: Automotive transmissions, rear axles, general engineering machinery.P6: Machine tool feed systems with moderate precision needs. P5 and above: Aerospace, precision machine tool spindles—high precision and load capacity. 

Cylindrical Roller Bearings.P0: Industrial conveyors (e.g., belt conveyor rollers).P6 and above: High-precision grinding machine spindles, CNC machine lead screw supports. 

Thrust Ball Bearings.P0 Low axial load applications (e.g., small power tools). P6 and above: Precision lathe lead screws—high axial accuracy. 

Thrust Roller Bearings.P0: Heavy machinery (e.g., cranes, rolling mills)—axial support.P6 and above**: Aerospace engines, precision coordinate boring machines—extreme axial accuracy and load capacity. 

Impact of Bearing Precision Grade 

Performance Effects 

Rotational Accuracy: Higher grades reduce rotational runout (e.g., high-precision spindles in machine tools). 

Friction Characteristics: Smoother surfaces and tighter tolerances minimize friction and heat, ideal for high-speed systems. 

Stiffness: Enhanced dimensional accuracy ensures stable stiffness (e.g., aerospace engine bearings). 

Lifespan Effects 

Load Distribution: Higher precision reduces stress concentration, extending lifespan (e.g., large motors). 

Wear and Fatigue Reduced sliding and friction slow wear and fatigue (e.g., precision grinder spindles). 

Sealing and Lubrication: Tight tolerances improve sealing and lubrication retention, prolonging service life. 

When selecting bearings, there are the following considerations:

Lubrication and Heat Dissipation: For high-speed rotating bearings, in addition to choosing the appropriate bearing type, the lubrication method and heat dissipation measures need to be considered. For example, using mist lubrication or jet lubrication can effectively reduce the temperature of high-speed bearings. At the same time, selecting a lubricating oil with low viscosity and high flash point also helps to reduce heat generated by friction.

Accuracy Matching: When selecting the bearing accuracy, it should be matched with the overall accuracy requirements of the equipment. For example, in a high-precision grinder, the spindle bearing needs to be selected with P4 class or higher accuracy, while the feed shaft bearing may meet the requirements with P5 or P6 class.

Application Scenarios: Self-aligning bearings are often used in situations where it is difficult to ensure the coaxiality of the two bearing seat holes, such as long shaft transmissions and equipment with unstable installation bases. In large mechanical equipment such as mining machinery and metallurgical equipment, self-aligning roller bearings are widely used, which can effectively compensate for the shaft deflection caused by equipment deformation or installation errors. Working Environment

Temperature Range: Determine the ambient temperature range in which the bearing operates. For high-temperature environments, select high-temperature-resistant bearing materials such as ceramic ball bearings and special alloy bearings, and use high-temperature-resistant grease. For low-temperature environments, choose grease with good low-temperature performance to ensure good lubrication and starting performance of the bearing at low temperatures.

Chemical Corrosion: In environments with chemical corrosive media, such as in the chemical and electroplating industries, select stainless steel bearings or bearings with anti-corrosion surface treatment, and use anti-corrosion grease. In addition, sealing measures can be taken to prevent corrosive media from entering the bearing interior.

Price of Bearings by Precision Grade 

Prices vary based on type, brand, and specifications. For example: Deep Groove Ball Bearings: P0 (lowest cost) to higher grades (more expensive).  Angular Contact Ball Bearings: Higher precision grades incur higher costs due to manufacturing complexity. Imported brands, special materials, and large-sized bearings also command premium pricing. 

Supplier of Slewing Bearings

For purchasing guidance, consult LDB-Bearing, a supplier offering diverse bearing types (e.g., slewing rings, cross roller bearings, cylindrical roller bearings). Consider application-specific requirements (e.g., construction machinery, wind energy, automotive) to determine the optimal bearing type, size, and precision grade.

Why is slew Bearing Installation So Important?

The importance of bearing installation lies in its direct relation to the operating accuracy, stability, reliability, and service life of mechanical equipment. Improper installation may lead to frequent equipment failures and even premature scrapping.

What is slew bearing?

A slew bearing is a mechanical part used to support a rotating shaft or other moving components. It reduces friction, making the components operate more smoothly. It can withstand radial and axial loads, and features high precision and high reliability. Widely applied in various mechanical equipment such as automobiles, motors, and machine tools, it is one of the key components to ensure the normal operation of equipment.

Features of slew bearing

Slew Bearings, as crucial components in the mechanical field, have distinct characteristics. With an extremely low coefficient of friction, they reduce wear between components, enabling efficient transmission and greatly minimizing energy consumption. They can withstand loads in different directions, be it axial thrust or radial pressure. Moreover, their high precision ensures the stable operation of equipment, allowing for reliable performance even under harsh working conditions. They are widely applied across all industrial sectors.

The importance of bearing installation.

As a crucial component of mechanical equipment, the installation quality of bearings is of utmost importance. Precise installation is the cornerstone for ensuring the efficient and stable operation of equipment. It can guarantee high-precision during mechanical operation, enabling all components of the equipment to work in harmony and fit seamlessly. If there are installation deviations, it will not only cause abnormal vibrations and noises but also exacerbate component wear, resulting in a significant increase in energy consumption and a substantial reduction in equipment stability. Moreover, improper installation can easily cause failures, shorten the service life of the equipment, increase maintenance costs and downtime, and bring serious losses to production. Therefore, standardized and scientific bearing installation is a necessary condition for achieving good equipment performance and ensuring the orderly progress of production.

Precautions During Slew Bearing Installation

Preparation Before Installation

Inspect Parts: Check the dimensional accuracy, form accuracy, and surface quality of the bearings and related parts to ensure there are no defects or damages. At the same time, confirm that the dimensions, shapes, and surface roughness of the journal and housing bore that cooperate with the bearing meet the requirements.

Clean Parts: Use a clean cloth or special cleaning agent to thoroughly remove oil stains, iron filings, dust, and other impurities from the surfaces of the bearing, journal, housing bore, etc., to prevent impurities from entering the bearing and affecting its performance and life.

Prepare Tools: Prepare appropriate installation tools, such as presses, sleeves, hammers, pullers, etc. Avoid directly hitting the bearing with a hand hammer to prevent damage to the bearing.

Installation Proces

Fit Selection: Select the appropriate fit method according to the type, size, and working conditions of the bearing. For interference fits, the hot installation or cold installation method can be used. In hot installation, the bearing is heated to an appropriate temperature to expand its inner diameter and then sleeved onto the journal. In cold installation, the journal is cooled to reduce its size and then inserted into the inner hole of the bearing.

Installation Direction: For bearings with direction requirements, such as angular contact ball bearings and tapered roller bearings, they must be installed in the correct direction to ensure that the bearings can withstand loads normally.

Installation Accuracy: Ensure the installation accuracy of the bearing during installation, and make sure that the coaxiality and perpendicularity of the bearing with the journal and housing bore meet the requirements. For high-precision bearings, such as machine tool spindle bearings, the installation accuracy requirements are even higher, and professional measuring tools are required for inspection and adjustment.

Inspection After Installation

Clearance Inspection: After installation, check the clearance of the bearing to ensure it is within the specified range. Excessive or too small clearance will affect the performance and life of the bearing.

Lubrication and Sealing: Select the appropriate lubricant and ensure that the bearing is well lubricated. At the same time, install an effective sealing device to prevent lubricant leakage and the entry of external impurities into the bearing.

Operation Inspection: During the trial operation stage of the equipment, closely observe the operation of the bearing, including temperature, noise, vibration, etc. If any abnormalities are found, stop the machine in time for inspection, identify the cause, and take measures.

Common Installation Faults of Bearings

Incomplete Installation

Manifestation: The bearing is not fully installed in the designated position, resulting in a gap between the inner or outer ring and the shaft shoulder or housing bore shoulder, and they are not closely fitted.

Consequences: The bearing will bear uneven loads during operation, generating additional stress and deformation, accelerating the wear and fatigue of the bearing, reducing its service life, and in severe cases, may lead to bearing failure.

Causes: Improper use of installation tools, uneven installation force, insufficient dimensional accuracy of the shaft or housing, etc.

Improper Fit

Manifestation: An overly tight interference fit causes the inner ring of the bearing to expand or the outer ring to shrink, changing the original clearance of the bearing. An overly loose fit causes the bearing to slide relative to the shaft or in the housing bore.

Consequences: An overly tight fit will increase the friction and heat generation of the bearing, affecting its normal operation and may even cause the bearing to seize. An overly loose fit will make the bearing operation unstable, generating vibrations and noises, and also exacerbate the wear between the bearing and the mating surface.

Causes: Inaccurate selection and calculation of the fit tolerance, and excessive dimensional deviations of the journal or housing bore due to insufficient processing accuracy.

Damage During Installation

Manifestation: Scratches, dents, cracks, and other damages occur on the raceway, rolling elements, or cages of the bearing.

Consequences: It damages the surface quality and accuracy of the bearing, causing abnormal noises and vibrations during the bearing’s operation, reducing its load-carrying capacity and service life. Severe damage may lead to immediate bearing failure.

Causes: Using improper tools to directly hit the bearing during the installation process or colliding with other parts during the assembly process.

Sealing Problems

Manifestation: The sealing device is installed incorrectly or the seal is damaged, resulting in lubricating oil leakage or the entry of external dust, moisture, and other impurities into the bearing.

Consequences: Lubricating oil leakage will prevent the bearing from being well lubricated, exacerbating wear. The entry of impurities into the bearing will contaminate the grease, increase friction, accelerate the wear and corrosion of the bearing, and reduce its performance and life.

Causes: Poor quality of the seal, damage to the seal during installation, inappropriate dimensions of the seal groove, etc.

Lubrication Problems

Manifestation: Excessive or insufficient application of grease, improper selection of the viscosity of the lubricating oil, or insufficient cleanliness of the lubricating oil.

Consequences: Excessive grease will cause excessive heat generation during the bearing’s operation, affecting heat dissipation. Insufficient grease cannot form a good oil film, increasing friction. Inappropriate viscosity will affect the lubrication effect, and insufficient cleanliness will allow impurities to enter the bearing, accelerating wear.

Causes: Insufficient understanding of the bearing’s lubrication requirements, unreasonable design of the lubrication system, or lack of attention to cleanliness when adding lubricating oil.

The price of production assemble.

Bearings of different types and specifications have different prices and production assemble.. difficulties. For example, deep groove ball bearings are relatively easy to install, while tapered roller bearings usually need to be installed in pairs and have their clearances adjusted, which is more difficult and results in higher labor costs. The installation cost of small bearings is relatively low, while that of large or special – specification bearings is higher. In economically developed regions and large cities, due to high labor costs and rents, the installation price will also be on the high side; in small and medium – sized cities and economically underdeveloped regions, the price is relatively lower.LDB-Bearing will give you best service.

How to Prolong the Service Life of Slew Bearings

Slewing bearings are core components of equipment, and it is of utmost importance to maintain them. Maintenance can extend their service life, reduce the failure rate of the equipment, and avoid economic losses caused by downtime due to failures.

What is the feature of slew bearings?

Bearings are crucial components in mechanical transmission. They reduce friction, making equipment run more smoothly and effectively minimizing energy consumption. With high load – bearing capacity, they can withstand loads in different directions such as axial and radial directions. Their high precision ensures the operational stability and reliability of equipment. Widely used in various machinery, bearings significantly enhance the mechanical performance and service life.

How to Prolong the Service Life of Slew Bearings

In the operation of machinery, the significance of bearings is beyond doubt. Maintenance, meanwhile, is crucial for ensuring that bearings can operate efficiently over an extended period. To prolong the service life of bearings, it is necessary to comprehensively optimize multiple aspects, including design and selection, installation, lubrication, maintenance, and the operating environment. I’ve got a set of tried-and-true slew bearing maintenance methods, and I’m eager to share them with you.

Correct Selection and Design

Match Loads and Speeds

Select the type of bearing (such as deep groove ball bearings, tapered roller bearings, etc.) according to the actual load type (radial/axial/combined load) and magnitude.

For high – speed applications, give priority to rolling bearings with low friction (such as angular contact ball bearings) or ceramic bearings.

Consider the Operating Conditions

In high – temperature and corrosive environments: Select stainless – steel bearings or ceramic bearings.

In dusty and humid environments: Choose bearings with seals (such as deep groove ball bearings with rubber seals).

Reserve a Life Margin

Calculate the dynamic load factor (referring to the ISO 281 standard) to ensure that the theoretical life far exceeds the actual requirements.

Standardized Installation and Dismantling

Avoid Mechanical Damage

Use special tools (such as hydraulic presses) for installation, and direct hammering of bearings is prohibited.

Ensure that the tolerance fit between the shaft and the bearing housing meets the standards. An overly tight fit can cause deformation, while an overly loose fit can lead to slippage.

Alignment and Balancing

Check the coaxiality of the shaft and the bearing housing to avoid uneven loading (calibrate using a laser alignment instrument).

High – speed rotating shafts need to be dynamically balanced to reduce additional loads caused by vibration.

Clean the Installation Environment

Clean the shaft, bearing housing, and tools before installation to prevent foreign objects (such as metal shavings, dust) from entering the bearing.

Scientific Lubrication Management

Select the Appropriate Lubricant

Grease Lubrication: It is highly versatile and suitable for medium – to – low – speed applications (such as lithium – based grease, complex calcium sulfonate grease).

Lubricating Oil: It is suitable for high – temperature, high – speed, or heavy – load scenarios (such as mineral oils or synthetic oils with ISO VG 32 – 100).

For special environments: Use food – grade lubricating grease (certified by NSF H1) or high – temperature lubricating grease (such as polyurea – based grease).

Control the Lubrication Quantity

The grease filling amount should be 30% – 50% of the internal space of the bearing. Excessive filling can cause overheating.

Regularly replenish the lubricating grease (according to the operating hours or the recommendations in the equipment manual, for example, replenish the grease every 2000 operating hours).

Avoid Contamination

Use clean lubricants, and the lubrication tools (such as grease guns) should be dedicated to prevent the mixing of impurities.

Thoroughly remove the old grease when replacing the lubricant.

Daily Maintenance and Monitoring

Regular Inspections

Vibration Detection: Use a vibration analyzer to monitor abnormal vibrations (to detect spalling and wear at an early stage).

Temperature Monitoring: If the bearing temperature rises by more than 30°C above the ambient temperature, stop the machine for inspection.

Noise Analysis: Abnormal metal friction noises may indicate poor lubrication or internal damage.

Seal Protection

Check whether the seals are aged or damaged and replace them in a timely manner (for example, double – lip seals are better than single – lip seals).

In a dusty environment, additional protective covers or labyrinth seals can be installed.

Preventive Replacement

Develop a replacement plan based on historical operation data to avoid sudden failures.

Optimize Operating Conditions

Avoid Overloading

It is prohibited to exceed the rated dynamic load of the bearing (refer to the bearing model manual).

For applications with impact loads, select needle roller bearings or self – aligning roller bearings that can withstand impacts.

Control the Rotational Speed

Avoid exceeding the maximum rotational speed of the bearing (for high – speed applications, light – series or ceramic bearings can be selected).

Environmental Control

In high – temperature environments: Strengthen heat dissipation (such as air cooling, oil cooling) or select high – temperature – resistant materials (such as silicon nitride ceramics).

In humid environments: Use bearings with anti – rust coatings or regularly apply anti – rust oil.

Common Misconceptions and Corrections

Misconception 1: The more lubrication, the better.

Correction: Excessive lubrication can cause the grease to agitate and generate heat, accelerating its aging.

Misconception 2: Tapping the outer ring with a hammer during installation.

Correction: Tapping the outer ring may cause the raceway to deform. Instead, apply pressure evenly to the inner ring.

Misconception 3: Ignoring slight abnormal noises.

Correction: Abnormal noises are early signs of malfunctions and need to be investigated immediately.

Supplier of Slewing Bearing

If you adopt this set of maintenance methods of mine, the lifespan of the bearings can be significantly extended. It’s no problem to extend it from the original 1 year to 3 – 5 years. This can not only reduce the cost of frequent bearing replacements, including the cost of purchasing new bearings and the labor cost for replacement, but also minimize the losses caused by equipment downtime due to failures. It can improve production efficiency and make your equipment operate more stably and reliably.I hope you can consider giving my methods a try. If you have any questions during the actual operation process, feel free to contact LDB Bearing at any time. I’m more than happy to help!

What is high-quality slew bearing?

A bearing is a core component in mechanical engineering. Its core functions can be summarized as: supporting rotating components, reducing friction, and ensuring the efficient and smooth operation of machinery. Simply put, it is a key part that enables machines to “rotate smoothly”.

What is the feature of slew bearing?

Slewing bearing supports have the following characteristics: They can withstand axial forces, radial forces, and overturning moments simultaneously, and can achieve a relatively smooth 360-degree slewing motion. With a compact structure, they occupy a small space, effectively saving the space of the equipment. They are easy to install and can be easily connected and matched with other components. They have a relatively high precision, which can ensure the accuracy and reliability of the slewing motion. They have a large load-bearing capacity, are suitable for various heavy-duty working conditions, and are widely used in fields such as construction machinery and port machinery.

Classification of slew Bearings

There are many ways to classify slew bearings. Here, based on the working principle, we can divide them into:

Rolling bearings: Their main feature is that rolling elements (such as steel balls, rollers) roll between the inner and outer rings to reduce friction.

Advantages: Low friction, high efficiency, and easy maintenance.Disadvantages: Sensitive to foreign objects and require regular lubrication.

Sliding bearings: They have no rolling elements and rely on a lubricating film for direct sliding (such as bearing bushes).

Advantages: Simple structure, impact-resistant, and suitable for high-speed and heavy-load applications.Disadvantages: High friction and require continuous lubrication.

Application of Slew Bearings

Industrial Field

Machine tools: High-precision bearings are used in the spindles of machine tools to ensure the rotational accuracy during tool cutting, guaranteeing the dimensional accuracy and surface quality of the machined parts.

Motors: The rotor of a motor is supported by bearings, enabling the rotor to rotate smoothly, reducing friction losses, and improving the efficiency and service life of the motor.

Metallurgical equipment: For example, the bearings in steel rolling mills need to withstand huge rolling forces to ensure the stable rotation of the rolls and achieve the rolling of steel.

Transportation Field

Automobiles: Wheel hub bearings support the wheels of automobiles, bearing the weight of the vehicle and various forces during driving. At the same time, they ensure the free rotation of the wheels, which is crucial for the vehicle’s handling and safety.

Trains: Axle box bearings are used between the train axles and bogies, adapting to high-speed driving and heavy-load requirements, and ensuring the stability and reliability of train operation.

Aircraft: The bearings in aircraft engines need to operate under high temperature, high speed, and high load conditions, ensuring the stable rotation of the engine rotor, and are key components for the reliable operation of the engine.

Home Appliance Field

Air conditioners: The bearings in air conditioner compressors ensure the rotation of the compressor crankshaft, enabling the compressor to efficiently compress and transport refrigerant.

Washing machines: The rotation of the inner drum of a washing machine relies on bearings for support. They can bear the weight of clothes and water, ensuring the stable operation of the washing machine at different speeds.

Other Fields

Medical devices: High-precision bearings in devices such as CT scanners and MRI machines ensure the precise rotation and positioning of the scanning components, improving the imaging quality.

Robots: The bearings at the joints of robots enable the joints to rotate flexibly, enabling various complex movements, and play a key role in the motion accuracy and stability of robots.

Wind turbines: The main bearings support the impeller shaft of wind turbines, bearing huge axial and radial loads, ensuring the stable rotation of the impeller under different wind speeds and converting wind energy into electrical energy.

How to maintain the bearing

Application Scenarios and Load Requirements

Load Type: Determine the type of load (radial, axial, or combined load) that the bearing will bear, and select the corresponding bearing type (for example, deep groove ball bearings are suitable for radial loads, and tapered roller bearings are suitable for combined loads).

Load Magnitude: Select the bearing size and load-carrying capacity according to the load intensity (refer to dynamic/static load parameters).

Rotational Speed Requirements: For high-speed applications, choose bearings with low friction (such as angular contact ball bearings or ceramic bearings), and ensure that the rated speed limit is not exceeded.

Adaptability to the Working Environment

Temperature:

High-temperature environment: Choose high-temperature-resistant materials (such as stainless steel, ceramic bearings) or adopt cooling measures.

Low-temperature environment: Use low-temperature grease or special alloy bearings.

Corrosion: In humid or chemically corrosive environments, give priority to stainless steel, coated bearings, or sealed bearings.

Dust/Pollution: Select bearings with rubber seals (such as 2RS type) or dust covers (such as ZZ type), or install protective covers externally.

Bearing Types and Structures

Rolling bearings (such as ball bearings, roller bearings):

Advantages: Low friction, high efficiency, and easy maintenance.

Applicable scenarios: Medium to high speed, low impact load (such as motors, machine tools).

Sliding bearings (such as bearing bushes, self-lubricating bearings):

Advantages: Impact-resistant, suitable for heavy-load or low-speed applications.

Applicable scenarios: Metallurgical equipment, large machinery.

Materials and Processes

Material Selection:

Ordinary steel: Economical, suitable for general industrial environments.

Stainless steel: Corrosion-resistant, suitable for the food and chemical industries.

Ceramics (such as silicon nitride): High-temperature-resistant, lightweight, suitable for high-speed or extreme environments.

Manufacturing Process: High-precision bearings (such as P4/P5 grade) are used in precision equipment (such as machine tool spindles, medical instruments).

Lubrication Management

Lubrication Methods:

Grease lubrication: Suitable for medium to low speed, maintenance-free scenarios (such as lithium-based grease).Oil lubrication: Suitable for high speed, high temperature, or heavy load (such as ISO VG 32 – 100 mineral oil).Sealing Design: Sealed bearings (such as rubber-sealed) can reduce contamination and extend the lubrication cycle.

The Price of Bearings

The price of bearings is affected by many factors. For example, different brands use different processes, which will affect the price. Different materials also have different applications, which also affect the price. In addition, market demand is one of the main factors. LDB Company provides many different types and uses of bearings. If you want to know more, you can contact us.

Slew Bearing manufacturer

LDB was established in 1999. It is a company that focuses on scientific and technological innovation, with more than 20 utility model patents, and has won many honorary titles such as Henan Provincial Science and Technology-based Small and Medium-sized Enterprise. We are committed to the design, development, manufacturing, and sales of slewing drives and slewing bearings. If you want to inquire or purchase bearings, you can consult us.

Comprehensive guide on Slewing Ring Bearing

What is a Slewing Ring Bearing?

A slewing ring bearing (also known as a turntable bearing or slew bearing) is a type of large bearing designed to accommodate axial, radial, and moment loads simultaneously. It typically consists of an inner ring, outer ring, rolling elements (such as balls or rollers), and a raceway. These bearings are used in applications where rotational movement is required, often with heavy loads and low to moderate speeds.

Types of Slewing Ring Bearings

Slewing ring bearings can be classified based on several factors, including the type of rolling element and the arrangement of the bearing components:

  1. Four-point contact bearings: These have four contact points between the balls and the raceways, allowing them to carry both axial and radial loads along with tilting moment loads. They are commonly used in applications where the load is evenly distributed.
  2. Crossed roller bearings: In these, the rollers are arranged in a criss-cross pattern, offering high load capacity and rigidity. They can handle high axial and radial loads with better precision, often used in precise rotating mechanisms.
  3. Ball type slewing bearings: These use balls as rolling elements and are suitable for applications with lighter loads and moderate rotational speeds.
  4. Roller type slewing bearings: These use cylindrical or tapered rollers for heavier-duty applications, providing a higher load capacity than ball type bearings.
  5. Triple-row bearings: These have three rows of rolling elements—balls or rollers—allowing them to handle higher loads and improve stiffness. They are often used in large machinery like cranes and excavators.

Features of Slewing Ring Bearings

  • Load handling: Slewing ring bearings are capable of supporting axial, radial, and moment loads simultaneously, making them ideal for machines that require rotational movement under heavy loads.
  • Precision: Many slewing ring bearings are designed with high precision to maintain accurate and smooth rotational movement.
  • Compact design: The compact nature of slewing ring bearings makes them suitable for applications with space constraints.
  • Durability: They are typically made from high-strength steel or other durable materials to withstand harsh operating conditions.
  • Versatility: Slewing ring bearings can be custom-made to fit specific applications, allowing for flexible design options.
  • Sealing: Many slewing bearings come with integrated seals to prevent contamination and reduce maintenance needs.

Applications of Slewing Ring Bearings

  • Crane systems: Used in tower cranes, mobile cranes, and crawler cranes to allow rotation and movement of heavy loads.
  • Wind turbines: For the yaw bearing in wind turbine systems, allowing the turbine to rotate and face the wind.
  • Construction equipment: Excavators, loaders, and other heavy machinery use slewing ring bearings for rotational movement.
  • Marine applications: Used in the turntables of radar, communication, and other systems aboard ships.
  • Solar tracking systems: In solar panels, slewing rings help with tracking the sun’s position to maximize energy capture.
  • Heavy industrial machinery: In machines like rotary tables and turntables for precise rotation under load.

How to Select Slewing Ring Bearings?

Selecting the right slewing ring bearing depends on several factors:

  1. Load requirements: Determine the axial, radial, and moment loads the bearing must support. The type and size of the bearing should be chosen based on the load capacity needed.
  2. Rotational speed: Consider the speed at which the bearing will rotate. Higher speeds might require bearings with lower friction and specialized materials.
  3. Operating environment: If the bearing will operate in harsh conditions (extreme temperatures, dust, moisture), ensure it has appropriate seals and coatings to withstand these conditions.
  4. Precision and rigidity: For applications requiring high precision and low deflection, like robotics or industrial machinery, choose a bearing with high rigidity, such as crossed roller bearings.
  5. Space limitations: If space is a concern, a smaller, lighter slewing ring bearing may be necessary. Ensure that the bearing fits within the required dimensions without compromising performance.
  6. Material selection: Choose the material based on the operating environment (corrosion resistance, high strength, etc.). Common materials include high-strength steel, stainless steel, and sometimes ceramic components for special applications.
  7. Maintenance and longevity: Consider the maintenance needs of the bearing, including lubrication intervals, ease of replacement, and expected operational lifespan.

By carefully evaluating these factors, you can select the slewing ring bearing best suited to your application, ensuring optimal performance and longevity.

Supplier of Slewing Ring Bearing

LDB Bearing is a professional slewing ring bearing manufacturer has rich experience in supplying high quality and precision slewing bearing for large projects. If you are looking for slewing ring bearing for your projects, feel free to contact us.

Guide and overview of Four-Point Contact Ball Slew Bearing

A four-point contact ball slew bearing is a type of rotational bearing designed to support large loads while providing smooth, reliable rotation. It is characterized by four points of contact between the steel balls and the bearing raceways, which allow it to carry both axial and radial loads as well as tilting moments. This feature makes the four-point contact ball slew bearing highly versatile for use in applications that require rotation and load support.

Types of Four-Point Contact Ball Slew Bearing

Single-row Four-Point Contact Ball Slew Bearing: This type has a single row of balls and is designed for lighter load applications.

Double-row Four-Point Contact Ball Slew Bearing: This type consists of two rows of balls, providing higher load-bearing capacity and better support for heavy-duty applications.

Crossed Roller Slew Bearing: Although not strictly a “ball” bearing, this type uses rollers arranged in a crisscross pattern and can support both axial and radial loads, making it suitable for similar applications.

Features of Four-Point Contact Ball Slew Bearing

Compact Design: The four-point contact configuration allows for a compact design, making it suitable for installations where space is limited.

High Load Capacity: It can carry radial, axial, and tilting loads simultaneously, making it suitable for applications with high load requirements.

Versatility: These bearings are designed to handle combined loads, including axial, radial, and moment loads, making them highly versatile.

Easy Installation: The compact size and simple structure make them easier to install in various mechanical systems.

Low Maintenance: Four-point contact ball slew bearings generally require minimal maintenance, making them cost-effective in the long term.

Applications of Four-Point Contact Ball Slew Bearing

Construction Machinery: Used in cranes, excavators, and other heavy equipment where rotation and load support are essential.

Renewable Energy: Applied in wind turbines to allow for the rotation of the turbine blades.

Automated Guided Vehicles (AGVs): Used in automated systems for handling heavy loads with rotation.

Solar Trackers: Enables the rotation of solar panels to follow the sun’s position.

Heavy Equipment: Used in other machinery, such as rotary tables, material handling systems, and industrial robots.

Tech Specs of Four-Point Contact Ball Slew Bearing

Load Capacity: Typically ranges from a few tons to several hundred tons, depending on the design and size.

Size: Can vary from small diameters (a few hundred millimeters) to very large diameters (several meters).

Material: High-strength steel is commonly used for the inner and outer rings, while ceramic or steel balls are often used for the rolling elements.

Bearing Configuration: Four-point contact ball bearings consist of two raceways and four points of contact between the balls and raceways.

Lubrication: Requires lubrication to reduce friction and wear; typically grease or oil is used.

Rotational Speed: Can support low to medium speeds depending on the load and application.

Operating Temperature: Typically operates within a range from -30°C to +120°C, though specialized materials can extend this range.

How to select four-point contact ball slew bearing?

Selecting a four-point contact ball slew bearing requires careful consideration of several factors to ensure that the bearing meets the requirements of your specific application. Here are the key steps to guide you in selecting the right bearing:

1. Determine the Load Requirements

Axial Load: The bearing must handle the axial load acting along the axis of rotation. Ensure the selected bearing can support the maximum axial load required for your application.

Radial Load: The bearing should also support radial loads that act perpendicular to the axis of rotation.

Tilting Moment (Moment Load): If your application involves tilting or turning, the bearing should handle the moment (torque) that may be applied to it.

2. Identify the Size and Dimensions

Inner and Outer Diameter: Choose a bearing with appropriate inner and outer diameters based on the space available in your machinery.

Height or Width: Ensure that the bearing’s height (or width) fits within the mechanical system’s design constraints.

Load Rating: Check the load rating (dynamic and static) provided by the bearing manufacturer to ensure it can handle the expected loads and moments during operation.

3. Consider Rotational Speed and Performance

Speed Requirements: Four-point contact ball slew bearings are generally used in low- to medium-speed applications. Consider the maximum speed at which the bearing will operate and check if the bearing can support this speed without excessive wear.

Friction and Efficiency: Lower friction bearings lead to more efficient rotation and less heat generation. Ensure the bearing type offers low friction for your application.

4. Material Selection

Raceway Material: High-strength materials like alloy steel or stainless steel are commonly used for raceways. Depending on the environmental conditions (such as exposure to corrosive elements), you may need to select stainless steel or other corrosion-resistant materials.

Ball Material: The balls are typically made of steel, ceramic, or a hybrid of both. Ceramic balls offer lower friction and better performance in harsh environments but are more expensive.

Lubrication: Depending on the environment, you may need a bearing that is pre-lubricated or one that can easily be lubricated with grease or oil. Ensure the bearing is compatible with the lubrication system.

5. Check for Environmental Conditions

Temperature Range: Consider the operating temperature range of the bearing. Standard bearings typically operate between -30°C and 120°C, but you may need special materials if your application requires operation in extreme temperatures.

Corrosion Resistance: In corrosive environments (such as offshore or chemical industries), you may need a bearing with enhanced corrosion resistance, such as stainless steel or a special coating.

Dust and Contaminant Resistance: Ensure the bearing has proper sealing or protection against dust, dirt, or other contaminants that could reduce its lifespan.

6. Bearing Configuration

Single Row vs. Double Row: Single-row bearings are suitable for lighter applications with moderate load requirements. Double-row bearings provide higher load capacity and are suitable for more demanding applications.

Sealing Type: Choose a bearing with appropriate seals if your application involves exposure to dirt, water, or chemicals.

Inner Ring or Outer Ring Rotation: Some bearings are designed for inner ring rotation, while others are for outer ring rotation. Consider which type of rotation is required in your application.

7. Design Considerations

Mounting and Alignment: Verify that the bearing is easy to mount and align properly. Poor alignment can lead to premature wear and failure.

Weight and Space Constraints: Ensure the bearing fits within the available space and meets any weight limitations in your system design.

8. Consider Service Life and Maintenance Needs

Maintenance Requirements: Choose a bearing that offers easy maintenance options, including the ability to monitor wear and replace seals or lubricants. Some bearings are designed for long service life with minimal maintenance.

Service Life (L10 Life): Check the L10 life (the point at which 90% of bearings will still be operational). A longer L10 life indicates better durability under load.

9. Manufacturer and Quality Standards

Reputation of Manufacturer: Select a reputable bearing manufacturer known for producing high-quality, reliable bearings.

Quality Certifications: Ensure the manufacturer adheres to industry standards (such as ISO, DIN) for quality control, as this ensures better reliability and performance of the bearing.

10. Cost-Effectiveness

Budget: While cost should not be the sole deciding factor, you should balance performance requirements with your budget constraints. Higher load ratings, specialized materials, and better seals will generally increase the cost of the bearing.

Supplier of four-point contact ball slew bearing

LDB Bearing is a professional slew bearing manufacturer provides high quality and long service life four point contact ball slew bearing for your needs in any project. If you are looking for four point contact ball slew bearing, feel free to contact us.

What is a 4 point contact ball slew bearing?

What is a 4-Point Contact Ball Slewing Bearing?

A 4-point contact ball slewing bearing is a specialized bearing that facilitates rotational movement between two parts of a machine, often supporting heavy loads while allowing for pivoting and rotating. It is characterized by its ability to accommodate axial, radial, and moment loads from any direction simultaneously. The “4-point” refers to the design where each ball contacts the raceway at four points, which optimizes load distribution and increases the bearing’s ability to handle various loads.

Types of 4-Point Contact Ball Slewing Bearings

Single Row Four-Point Contact Ball Bearings: The most common type, featuring a single row of balls with a gothic arch raceway. It provides compactness and high performance, suitable for light to medium load applications.

Double Row Four-Point Contact Ball Bearings: These have two rows of balls which can bear more weight and are suitable for applications requiring higher load capacity.

Flanged Type Four-Point Contact Ball Bearings: These bearings include flanges on the inner or outer rings, which can help in mounting and provide axial location.

Features of 4-Point Contact Ball Slewing Bearings

High Load Capacity: They can support higher loads in all directions compared to other types of bearings due to their unique contact geometry.

Compact Design: These bearings are designed to be compact, making them ideal for use in areas where space is limited.

Versatility: Suitable for both axial and radial loads and capable of handling tilting moments.

Smooth Rotation: Offers smooth and stable rotation, which is crucial for applications involving precision movement.

Ease of Maintenance: Some designs are made to be easily maintained, including options for lubrication which extend the lifespan of the bearing.

Applications of 4-Point Contact Ball Slewing Bearings

4-point contact ball slew bearings are used in a variety of applications, including:

Cranes and Lifts: For rotation of the boom, basket, or other lifting components.

Wind Turbines: In the yaw and pitch control mechanisms.

Medical Equipment: Particularly in advanced imaging devices like CT scanners and MRI machines.

Industrial Turntables: Used to rotate parts or entire assemblies within manufacturing setups.

Robotic Arms: Provides rotational movement and stability.

Marine Applications: Such as radar and satellite positioning systems.

How to Select 4-Point Contact Ball Slewing Bearings?

Selecting the right 4-point contact ball slewing bearing involves considering several factors:

Load Requirements: Determine the axial, radial, and moment loads the bearing will need to support.

Speed Requirements: Consider the operational speed of the bearing, as higher speeds may require specific design features to reduce friction and wear.

Environmental Conditions: Assess the environmental conditions such as temperature, presence of corrosive materials, and dust, which might affect the choice of materials and sealing options.

Size and Space Constraints: Evaluate the available space to ensure the bearing fits within the designated area.

Service Life and Maintenance: Consider the expected service life and ease of maintenance. Opt for bearings with features that facilitate long service life and ease of maintenance, such as lubrication ports.

Cost: Factor in the cost, not just in terms of initial purchase but also installation, maintenance, and potential downtime.

By carefully considering these factors, you can select a 4-point contact ball slewing bearing that meets the specific needs of your application, ensuring optimal performance and durability.

Four point contact ball slew bearing supplier

LDB Bearing is a professional four point contact ball slew bearing manufacturer provding high quality slew bearings, slew drives, and slew rings for industrial applications, if you are looking for four point contact ball slew bearing, feel free to contact us.

What is slew bearing?

What is a Slew Ring Bearing?

A slew ring bearing, also known as a slewing ring or turntable bearing, is a rotational rolling-element bearing that typically supports a heavy but slow-turning or slow-oscillating load, often a horizontal platform such as a conventional crane, a swing yarder, or the wind-facing platform of a horizontal-axis windmill. It consists of an inner ring and an outer ring, one of which usually incorporates a gear. Together with attachment holes in both rings, they enable an optimized power transmission with a simple and quick connection between adjacent machine components.

Types of Slew Ring Bearings

Slew ring bearings are categorized mainly based on their design and the demands of the application:

Single-row Four-point Contact Ball Bearing – This type is the most common, characterized by a single row of balls with the contact angle that can support axial, radial, and moment loads.

Double-row Ball Bearing – Offers higher load capacity than a single-row, using two rows of balls.

Crossed Roller Bearing – Rollers are arranged at right angles to each other at intervals between inner and outer rings. This design offers high stability and accuracy, suitable for high axial and radial loads.

Three-row Roller Bearing – This type combines three rows of rollers to bear different loads separately, facilitating higher load capacity and rigidity.

Ball and Roller Combination Bearing – These bearings combine both rollers and balls in different rows to optimize load capacity and reduce material costs.

Features of Slew Ring Bearings

High Load Capacity: Designed to handle simultaneously acting radial, axial, and moment loads.

Compactness: They are relatively thin in section and are often made in diameters of a meter or more; thus, they save space compared to conventional bearings.

Rotation Accuracy: Provides precise rotation and positioning.

Ease of Mounting: Their design simplifies the structure of the installation equipment.

Integrated Gearing: Many slew bearings have internal or external gears, facilitating the integration into a system.

Applications of Slew Ring Bearings

Slew bearings are used in a variety of applications including:

Construction machinery like cranes and excavators.

Wind turbines.

Medical equipment, particularly in rotating tables and scanners.

Military applications, such as in radar and missile launchers.

Industrial turntables and manipulators.

Robotics and automation systems.

Price of Slew Ring Bearings

The price of slew ring bearings can vary widely depending on the size, type, material, and specific manufacturer requirements. Small, standard slew bearings might start around a few hundred US dollars, while large, custom-engineered bearings can cost several thousand or even tens of thousands of dollars.

How to Select Slew Ring Bearings?

Selecting the appropriate slew ring bearing involves several considerations:

Load Type and Magnitude: Determine the axial, radial, and moment loads the bearing will need to support.

Precision Requirements: Consider the required precision and rotational speed.

Environmental Conditions: Assess the operating environment, including temperature extremes and exposure to contaminants or corrosive elements.

Size and Space Constraints: Factor in the physical space available for the bearing.

Gear Requirements: Decide if internal or external gearing is necessary for your application.

Material and Coatings: Choose materials and coatings based on environmental and load conditions to enhance durability and performance.

Lifecycle and Maintenance: Consider the expected life and maintenance requirements, including lubrication and inspection intervals.

By understanding these factors, engineers can select the most appropriate slew ring bearing for their specific application, balancing performance, longevity, and cost.

LDB Bearing is a professional slewing bearing manufactuer offers high-quality, custom-tailored slew bearings, slewing drives and gears for your project.

What is slewing bearing -Lastest Guide to the slewing bearings

Overview of Slewing Bearings

Slewing bearings, alternatively known as turntable or rotary bearings, comprise large-sized bearings specifically engineered to concurrently support axial, radial, and moment loads. Their primary function revolves around facilitating the smooth rotation of heavy machinery and equipment.

Slewing bearings have found widespread applications across diverse industries, including construction, renewable energy, aerospace, automation, medical, marine, and heavy equipment manufacturing. Its usage spans components in crane manufacturing, excavators, wind turbines, heavy construction equipment, aerial platforms, medical imaging machinery, radar and satellite systems, tidal energy systems, and robotic arms.

Structure of Slewing Bearings

A slewing bearing’s structure includes the following components:

1. Inner ring: The inner circular part, with raceways on its inner surface and, where applicable, gear teeth.

2. Outer ring: The outer circular part, with raceways on its outer surface and, where applicable, gear teeth.

3. Rolling elements: Balls, cylindrical rollers, or a combination of both, placed between the inner and outer rings in the raceways.

4. Retainer or cage: Maintains the spacing between the rolling elements, ensuring even and controlled movement.

5. Gear teeth: Found on either the inner ring (internal gear), outer ring (external gear), or no gear at all, depending on the application requirements.

How do Slewing Bearings Work?

The core components of a slewing bearing consist of an inner ring, outer ring, rolling elements (ball or cylindrical rollers), and retainers or cages. Both inner and outer rings feature raceways and gear teeth (applicable for geared bearings) that facilitate the placement and movement of the rolling elements. As the heavy machinery rotates, relative movements between the inner and outer rings trigger motion among the rolling elements in the raceways. This mechanism, in turn, decreases the friction between components and allows for the efficient transfer of axial, radial, and moment forces.

Slewing bearings exhibit the following characteristics:

1. Ability to handle combined axial, radial, and moment loads.

2. Resistance to high and low temperatures, with some specialized types designed for extreme temperature conditions.

3. Customizable gear teeth options for different applications (internal gear, external gear, or no gear).

4. Available in various designs such as single-row or double-row ball bearings, single-, double-, or triple-row roller bearings, or combined roller-ball bearings.

5. Ability to handle high overturning moments due to their large size and configurations.

6. High-quality bearings offer a long service life and low maintenance intervals.

Working Principle of Slewing Bearings

Slewing bearings primarily function through the friction derived from components within the bearing. The rolling motion of the rolling elements imparts the necessary reduction in friction for the simultaneous transfer of axial, radial, and moment forces across the bearing. This bearing setup ensures that heavy machinery and equipment operate smoothly with minimal wear and tear.

Dimensions of Slewing Bearings

Slewing bearings come in various diameters and sizes, depending on the application and load requirements. They can range from a few inches to several meters in diameter. The exact dimensions are determined by factors such as the bearing’s design, load capacity, and rotational speed requirements. We can customize the bearings according to specific customer needs. If you need more information or requirements of slewing bearing, please feel free to contact us.

Applications of Slewing Bearings

Slewing bearings are vital for facilitating the rotation and support of heavy loads in numerous applications, such as:

1. Crane manufacturing: They ensure smooth and precise rotational movement of crane booms and load handling.

2. Excavators: Slewing bearings help excavator booms and arms perform reliable and robust rotational movements.

3. Wind turbines: They ensure that nacelles rotate precisely, enabling the wind turbine blades to adapt and face the wind direction.

4. Heavy-duty construction equipment: Slewing bearings provide rotational support in equipment like tunnel boring machines and heavy-duty drilling rigs.

5. Aerial platforms: They offer stability and rotation in boom lifts, scissor lifts, and other aerial work platforms.

6. Medical equipment: In CT and MRI scanners, slewing bearings enable accurate and smooth rotation of the scanning gantries.

7. Radar and satellite systems: They facilitate the precise and consistent rotation of radar antennae and satellite dishes for accurate tracking and data acquisition.

8. Tidal energy systems: Slewing bearings enable the rotation of underwater turbines to optimize the harvest of tidal energy.

9. Robotic arms and manufacturing systems: They maintain stability and enable precise rotation in industrial robots and other automated equipment.

Industries Using Slewing Bearings

Slewing bearings have proved indispensable across several industries, including but not limited to:

1. Construction: In cranes, excavators, drilling rigs, and tunnel boring machines.

2. Renewable energy: In wind turbines, tidal energy systems, and solar tracking systems.

3. Aerospace: In radar antennae, satellite systems, defense-related applications, and loading machinery.

4. Automation: In industrial robots, robotic arms, and other automated equipment.

5. Medical: In CT and MRI scanners, and radiotherapy machines.

6. Marine: In ship cranes, offshore equipment, and tidal energy systems.

7. Heavy equipment manufacturing: In large-scale machinery production.

How do you test a Slewing Bearing?

Multiple steps are involved in the testing of a slewing bearing:

1. Conduct a comprehensive visual inspection to identify visible damage, corrosion, cracks, or wear on the bearing components.

2. Deploy feeler gauges to measure the radial and axial clearances, ensuring they fall within acceptable limits.

3. Inspect the lubrication system and lubricate the bearing according to manufacturer guidelines.

4. Check for smooth rotation and listen to any abnormal noises emanating from the bearing, which may signal potential issues.

5. Implement non-destructive testing (NDT) methods, such as ultrasonic testing or magnetic particle inspection, to pinpoint any flaws in the bearing materials.

How to choosing the Right Slewing Bearing?

To select a suitable slewing bearing, several factors must be taken into account:

1. Load requirements: Evaluate the axial, radial, and moment loads the bearing may face during operation.

2. Operating environment: Select a bearing designed to withstand specific working conditions, such as temperature, humidity, and exposure to dust or chemicals.

3. Gear type: Choices include internal, external, or no gear, depending on application requirements.

4. Bearing size: Depending on available space and load requirements, choose an appropriate diameter.

5. Bearing type: Select from single-row or double-row ball bearings, single-, double-, or triple-row roller bearings, or a combination of roller-ball bearings, considering load capacity and rigidity requirements.

6. Material: Assess the specific requirements and operating environments to select suitable material for bearing components, such as high-strength steel or corrosion-resistant alloys.

7. Lubrication: Evaluate the lubrication requirements for the application— grease or oil lubrication— and ensure proper sealing to prolong bearing life and maintain optimal performance.

Supplier of slewing bearing

Luoyang Longda Bearing Co., Ltd.(LDB-Bearing)was established in 1999 and is located in China’s bearing production base – Luoyang, Henan. LDB Bearing has a product range from 150mm to 4000mm in diameter slew bearing and gear rings, covering the production and manufacturing of various standard and non-standard specifications of slew bearings. LDB has design and manufacturing expertise in slew bearing and slew drive across a diverse range of markets and industries.

If you need slewing bearing for your project, or want to consult some related knowledge, you are welcome to contact us at any time, our professional technology and expertise can provide you with the best solution to meet your different needs.