How to judge the operating status of the slewing drive? Common faults and solutions

Slewing drives are widely used due to their modular installation convenience, operational stability, load-bearing capacity and strong environmental adaptability, etc., to improve industrial production efficiency and accelerate the realization of industrial automation. Then, once a failure occurs during the operation of the equipment, it may affect the normal production plan. For this reason, we should pay attention to the operation of the equipment and make timely judgments.

Judgment method of slewing drive operating state

SE Series Slewing Drive

1. Pay attention to the backhaul gap

During the operation of the equipment, observe the clearance of the rotary reducer during the return stroke, and judge the return clearance of the drive by the instant forward and reverse operation mode during operation. Refer to the theory of the type of rotary reducer corresponding to the instruction manual provided when the drive is purchased. The return gap can be used to judge whether the running state is normal.

2. Listen to the running sound

Normal equipment operating sounds are different from abnormal sounds. How to determine the operating status of the slewing drive can start from identifying the abnormal sounds. For abnormal noises or irregular sounds during operation, it is necessary to judge whether the reducer is in normal operation. If there are abnormal sounds, it should be repaired in time to determine the damage location and repair it.

3. Observe the operating temperature

If the slewing drive has abnormal temperature, there may be problems with overload operation or bearing wear and abnormal voltage, but these are usually not directly reflected from the operating state when the equipment is running, so we can judge by the temperature of the drive during operation. If the temperature is too high, it needs to be overhauled in time.

If all the above conditions are normal after running for more than 30 minutes, it means that the rotary reducer is in good working condition and can be used with confidence. So, the following editor introduces some common faults of rotary reducers for reference only.

Common faults and solutions of slewing drive

S Series Slewing Drive

1. The motor does not rotate: the motor does not rotate. Eliminate power failure and poor switch contact. There may be problems such as abnormal voltage, gear damage, overload operation, coil breakage, etc. You need to check the power supply, wiring, voltage, capacitor or directly contact the manufacturer for repair.

2. Abnormal heating: Abnormal heating of the drive may be caused by overload operation, abnormal voltage, bearing wear, etc. It is necessary to reduce the load and frequency of use, confirm whether the voltage is normal and perform maintenance.

3. Noise: The noise of the rotary reducer may have bearing damage, gear wear, or foreign matter jamming, and it needs to be disassembled and repaired by the manufacturer’s service personnel. Or there is lubricating oil contaminated or lack of lubricating oil, it should be supplemented or replaced in time.

4. Abnormal vibration: abnormal vibration caused by loose screws or wear of gears and bearings requires screw progress or replacement and maintenance of gear bearings.

5. Oil leakage: There are reasons such as loose screws or damage to the sealing ring, and the screws should be replaced or tightened in time.

The above are several judgment methods of Lunda editor on how to judge the running status of the slewing drive, as well as the common faults and solutions of the equipment. I hope it will be helpful to everyone. In the daily use of the reducer, you should pay attention to the running status of the equipment and find the problem in time. Repairs to prevent the deterioration of the problem from affecting production.

How to install the slewing drive? Installation method and process

The installation of the slewing drive device directly determines its fluency during the operation of the machine and the probability of failure during use. Improper installation may cause damage to it and affect its service life. Therefore, the installation is very important for the slewing drive. I don’t know how much you know about how to install the slewing drive.

Slewing drive installation tool

1. Auxiliary tools for hardware removal and installation such as wrenches, pliers, bolt tighteners, etc.;

2 Cleaners such as diesel, banana water, gasoline, etc.;

3. Scraper (used to clean up impurities on the supporting surface);

4. Feeler gauge, used for measurement in the later installation process;

HSE-2

Preparation before installation

1. Before installation, confirm whether the motor and the slewing drive are intact, and check whether the dimensions of the parts connected to the slewing drive match.

2. Screw on the screw on the dust-proof hole on the outside of the rotary drive flange, adjust the PCS system clamping ring to align the side hole with the dust-proof hole, and insert the inner hexagon to tighten. Then remove the motor shaft key.

3. Before installation, wipe the motor input shaft, positioning boss and the anti-rust oil at the connection part of the reducer with gasoline or zinc-sodium water.

4. Clean the impurities on the support surface (for example, iron filings, burrs, paint, welding slag, etc.).

5. Clean the anti-rust oil on the mounting surface of the rotary reducer.

6. Remove the transportation bolts.

Installation method

1. Fix the rotary reducer on the bracket with bolts, and install flat washers and spring washers on the bolt heads. The rotary reducer should be installed without load.

2. In order to avoid internal stress and installation problems caused by tightening the bolts, please add thread fastening glue to the threads; pre-tightened bolts and washers should be tightened crosswise; starting from the inner or outer ring, all bolts will be diagonal Tighten to 30% of the tightening torque, then tighten the diagonal to the tightening torque of the angle of 30%, and then tighten the diagonal to the mounting bolt, and do not leak. If the bolts cannot be fixed with bolts under structural constraints, the bolt holes must be sealed.

3. If filled with silica gel, it will leak water and dust into the rotary reducer. The installation bolts should consider the thread engagement length, which should not be too long, otherwise it will affect the rotation. Support rotation or cause interference; after tightening the bolt, mark the bolt head and its joint to facilitate future inspection of whether the bolt is loose.

SE Series Slewing Drive

The specific installation process

1. Clean the mounting bracket, remove welding slag, zinc plating residue, etc.;

2. Fix the bracket and the rotary reducer with bolts, and the bolt heads should be equipped with flat washers and spring washers;

3. The rotary reducer should be installed under no load.

4. Add thread fastening glue to the thread;

5. The pre-tightened bolts and washers should be tightened crosswise; the bolt tightening sequence is shown in the figure below; starting from the inner ring or outer ring, all bolts are tightened diagonally to 30% tightening torque, and then repeated diagonally to 50 % Tightening torque, tighten diagonally to 100% tightening torque.

6. The installation bolts are all on top, and no missing installation is allowed. If the bolts cannot be installed due to structural restrictions, the bolt holes must be sealed, such as filled with silica gel, otherwise water and dust will leak into the rotary reducer;

7. The thread engagement length should be considered for the installation bolts, and should not be too long, otherwise it will affect the rotation of the slewing ring or cause interference;

8. After the bolts are tightened, please mark the bolt heads and the joints, which is convenient for checking whether the bolts are loose in the future;

9. Repainting: During the installation of the rotary reducer, it will inevitably cause surface paint bumps and damage. Therefore, after the system is assembled, the rotary reducer needs to be repainted to improve the anti-rust and anti-corrosion capabilities.

After reading the installation method of the slewing drive and the specific installation process, everyone should have a certain understanding of how to install the slewing drive, so let’s take a look at some of the work after the slewing drive is installed.

Maintenance, inspection and lubrication after installation

1. Maintenance and inspection

After the initial assembly is used for about 100 hours, it is necessary to re-tighten the bolts to the specified tightening torque; this inspection needs to be carried out once a year. Under special operating conditions, the number of inspections is relatively reduced. After the bolts are loosened, please replace all bolts, nuts and washers immediately.

2. Lubrication

Lubrication of rotary reducer: The important parts of the product have been lubricated before leaving the factory. We will decide whether to add lubricating ester according to the actual situation during installation. The slewing ring raceway has been filled with grease before leaving the factory; the worm and the slewing ring need to be refilled with grease before use; the tapered roller bearing has been filled with grease before leaving the factory.

HSE Slewing Drive Gearbox

Installation precautions

1. Installation plane

The surface on which the rotary drive is installed should be kept smooth and clean, and the excess materials on it, such as paint residue, welding beads, burrs, etc., should be cleaned. At the same time, the installation surface should be dry and free of lubricant. Specifically, it is necessary to keep the mounting surface roughness of the mounting support not greater than Ra=12.5, 6.3μm. In order to avoid the unevenness of the mounting surface or the deformation of the support causing local overload of the rotary drive, the circumferential flatness error is within any range of 180 degrees. There can only be one wave ups and downs inside, and the changes are gentle.

2. The stiffness of the support

Standard slewing drive and zero-clearance slewing drive have different requirements for the rigidity of the support. Therefore, during installation, a support with corresponding rigidity should be selected according to the specific rotary drive.

3. Positioning

Both the inner and outer ring raceways of the slewing drive have a soft belt, which should be placed on both sides of the main load plane. That is 90 degrees staggered from the main load zone. There is a blockage or “S” mark on the soft belt. In addition, check the fit between the rotary drive and the mounting surface, usually with a feeler gauge. If the fit is not good, fill it with appropriate materials. It is forbidden to weld on the support after the rotary drive is installed.

4. Fastening bolts

Use the specified bolts, and do not use full-threaded bolts, do not use old bolts, nuts and washers, and prohibit the use of open washers such as elastic washers.

After reading this article, I believe that everyone has a certain understanding of how to install the rotary drive. During the installation process, the installation process and precautions must be strictly followed. At the same time, do not forget to check after the installation is completed.

What should I do if the slewing drive leaks?

Slewing drive is also called slewing reducer and slewing spur gear drive. Slewing drive oil leakage often occurs during the operation of the equipment, but there are many reasons for the oil leakage, and the solutions are also different. So what should I do if the slewing drive leaks gear oil? The following is a brief introduction by the slewing drive manufacturer on the cause and solution of the oil leakage of the slewing drive.

Reasons for gear oil leakage in slewing drive

HSE Slewing Drive Gearbox

1. The pressure difference between the inside and outside of the slewing drive

In a closed drive, each pair of gears meshing and friction will generate heat. According to Boyle Mario’s law, as the operating time increases, the temperature in the slewing drive box gradually rises, and the volume in the reducer box No change, so the pressure in the box will increase accordingly, and the lubricating oil in the box will be splashed and spilled on the inner wall of the reduction box. Due to the relatively strong oil permeability, under the pressure in the tank, where the seal is not tight, the oil will seep out from there.

2. The design of the slewing drive itself

The designed reducer has no ventilation hood or no breather plug on the peephole cover; the shaft seal structure design is unreasonable, and the oil groove and felt ring shaft seal structure is adopted. The compensation performance of the felt is extremely poor, which causes the seal to fail in a short time. ; Although there are oil return holes on the oil ditch, it is very easy to block and the oil return effect is difficult to play.

During the manufacturing process, the casting has not been annealed or aging treated, and the internal stress of the casting has not been eliminated, resulting in deformation and gaps resulting in oil leakage; there are defects such as sand holes, slag inclusions, pores, cracks, etc.; oil leakage caused by poor processing accuracy, due to deceleration The existence of factors such as low machining accuracy of the matching surface of the chassis body, improper tolerances, and non-conforming assembly requirements may cause the reducer to leak oil.

3. Excessive lubricating oil

During the operation of the slewing drive, the oil pool is greatly agitated, and the lubricating oil splashes everywhere in the machine. If the amount of lubrication is too much, a large amount of lubricating oil will accumulate on the shaft seal, joint surface, etc., resulting in leakage.

4. Insufficient installation accuracy

Oil leakage caused by poor installation accuracy. The reducer bears a huge dynamic load when it is started. Once the installation accuracy of the reducer does not meet the standard requirements, the base bolts of the reducer will be loosened, which will aggravate the vibration of the reducer and make the seal ring at the high and low speed shaft holes of the reducer. The wear is intensified, causing the lubricating oil to flow out. At the same time, when the equipment is overhauled, due to incomplete removal of dirt on the bonding surface, improper selection of sealant, reverse installation of the seal, and failure to replace the seal in time, oil leakage may also occur.

5. The lubricating oil model is wrong

Generally, the slewing drive often uses HJ-40, HJ-50 mechanical lubricants, and can also be lubricated with HL-30, HL-20 gear oils and HJ3-28 rolling machine oils. In short, the lubricating oil of the reducer should be selected according to the load, speed, temperature and other conditions. It is wrong to blindly pursue the viscosity of the lubricating oil, the better.

The solution to the leaking gear oil of the slewing drive

1. Improve the breathable cap and inspection hole cover

Aiming at the problem of oil leakage of the slewing drive caused by the pressure difference, it can be solved by improving the vent cap and the inspection hole cover. Although the reducer has a vent cap, the vent hole is too small, and it is easy to be blocked by dust and oil. In addition, the inspection hole cover must be opened every time the oil is refilled, and opening once will increase the possibility of oil leakage, causing leakage in places that did not leak. To this end, an oil cup-type vent cap can be made, and the original thin inspection hole cover is changed to 6mm thick, and the oil cup-type vent cap is welded to the cover plate. The diameter of the vent is 6mm, which is convenient for ventilation and makes the machine The internal and external pressures are balanced. When refueling in the future, you can directly add oil through the oil cup without opening the inspection hole cover to reduce the chance of oil leakage.

2. Unblock the lubricating oil return channel

The oil spilled on the inner wall of the box should flow back to the oil pool as soon as possible, and do not store it in the shaft head seal to prevent the oil from gradually leaching out along the shaft head. For example, an oil seal ring is designed on the shaft head of the reducer, or a semicircular groove is glued to the upper cover of the reducer at the shaft head, so that the oil splashed on the upper cover flows to the return pool along both ends of the semicircular groove.

3. Improve sealing materials

(1) Slewing drive shaft seal with output shaft as half shaft Improved belt conveyor, screw unloader, impeller coal feeder and other equipment. The output shaft of reducer is half shaft, which is more convenient for modification. Disassemble the reducer, remove the coupling, take out the shaft seal end cover of the reducer, machine the groove on the outer side of the original end cover according to the size of the supporting frame oil seal, install the frame oil seal, and the side with the spring is inward. When reinstalling, if the end cover is more than 35 mm away from the inner end surface of the coupling, a spare oil seal can be installed on the shaft outside the end cover. Once the oil seal fails, the damaged oil seal can be removed and the spare oil seal can be pushed into the end cover. Eliminate the time-consuming and laborious processes such as disassembling the reducer and disassembling the coupling.

(2) The output shaft of the reducer shaft seal of the entire shaft is improved. The output shaft of the reducer of the entire shaft transmission has no coupling. If the above scheme is modified, the workload is too large and unrealistic. In order to reduce the workload and simplify the installation procedure, a split-type end cover was designed, and an opening-type oil seal was tried. The outer side of the split end cover is machined with grooves. When installing the oil seal, first take out the spring, saw the oil seal into an opening, and sleeve the oil seal on the shaft from the opening, butt the opening with adhesive, and then install the opening upward. Put on the spring and push in the end cap.

4 Using polymer composite materials

Polymer composite materials are based on high molecular polymers, metal or ceramic ultra-fine powders, fibers, etc., which are composited under the action of curing agents and curing accelerators. Various materials complement each other in performance and produce a synergistic effect, so that the comprehensive performance of the composite material is better than that of the original composition material. With strong adhesion, mechanical properties, and chemical corrosion resistance, it is widely used in the repair of mechanical wear, scratches, pits, cracks, leakage, casting sand holes, etc. of metal equipment, as well as various chemical storage tanks , Chemical anti-corrosion protection and repair of reaction tanks and pipelines.

For the leakage of the static sealing point of the slewing drive, the polymer composite material and technology can be used to control the leakage on the spot. There is no need to disassemble, and the polymer composite material is used to control the leakage externally, which saves time and effort, and the effect is immediate. Oil resistance and 350% stretch, overcoming the influence of the vibration of the reducer, has well solved the problem that the company has not been able to solve for many years. If the static seal point of the reducer leaks oil during operation, the oil surface emergency repair agent of surface engineering technology can be used to stick the plug, so as to achieve the purpose of eliminating the oil leakage.

5. Improve the maintenance process

During the overhaul of the slewing drive, the process regulations must be carefully implemented. The oil seal must not be installed reversely, the lip must not be damaged, the outer edge must not be deformed, the spring must not fall off, the joint surface must be cleaned, the sealant must be evenly applied, and the amount of oil must not exceed the scale of the oil dipstick.

6. Do a good job of cleaning

The static sealing point of the slewing drive can generally be leak-proof through treatment. However, due to the aging of the seals, poor quality, improper assembly, and high surface roughness of the shaft, the dynamic sealing points will cause small leakage at individual dynamic sealing points. Due to the poor working environment of cement companies, the dust sticks to the shaft and it is almost greasy. Therefore, it is necessary to wipe off the oil stains on the shaft after the equipment is stopped.

What to do if the gear oil leaks in the slewing drive From the above-mentioned reasons and treatment methods of oil leakage, the common oil leakage problems can basically be solved. We should pay attention to the maintenance and regular maintenance of the reducer when using the slewing drive in daily life, which can better prevent the occurrence of oil leakage, and at the same time extend the operating life of the slewing drive to ensure its good working condition.

What is a slewing drive, what are its classification and application areas?

The slewing drive is a slewing reduction mechanism with an integrated driving power source. The slewing ring is used as the main transmission part and the mechanism attachment. Its essence is a permanent magnet motor with large torque. This product is also called a slewing reducer, a slewing drive, Compared with traditional rotary products, it is easy to install, easy to maintain, and save installation space to a greater extent. It is mainly used in beam trucks, aerial work vehicles, industrial robots, photovoltaic power generation, wind power generation, and construction machinery claws, etc. field.

What is a slewing drive

The slewing drive device is also called a slewing reducer, a gear reducer, a turntable reducer, a slewing mechanism, and a slewing drive pair. They are all types of reducers that use slewing bearings as the main support, and the auxiliary drive source uses gears or worms as the driving parts to achieve deceleration and full-circle rotation functions. The composition of the slewing drive mainly includes gears (or worms), slewing bearings, motors, housings, and bases. Slewing drive can be basically divided into single worm drive slewing drive, double worm drive slewing drive and special type of slewing drive.

Classification of slewing drives

WE Series Slewing Drive

1. Classification according to the transmission form

According to the variable transmission form of slewing drive, it can be divided into gear slewing drive and worm gear slewing drive, inheriting the characteristics of gear drive and worm gearing. These two slewing drives can be adapted to medium-high and low-speed applications respectively. In terms of carrying capacity, the performance of the worm gear type is better than that of the tooth type, and when the envelope worm transmission is adopted, its carrying capacity, anti-deformation ability and transmission rigidity are further improved, but the worm gear type slewing drive is more efficient in terms of efficiency. Inferior to the gear type slewing drive, the gear type slewing drive is divided into a straight tooth type slewing drive, a helical tooth type slewing drive, and a volute type slewing drive.

2. Classification according to the openness of the slewing drive

According to the openness of the slewing drive transmission mechanism, the slewing drive can be divided into open and closed. Generally, the open structure is mostly used in applications where the environment is too harsh and the maintenance and maintenance cycle is short. The open structure is more convenient for parts. The inspection, maintenance and maintenance of the product are also more convenient for replacement. However, the closed structure can provide a longer maintenance life cycle in occasions where the environmental conditions have not changed much and the environmental pollution level is below the medium level.

3. Classification according to driving power

According to the structure operation type of the slewing drive, it can be divided into light slewing drive, medium slewing drive and heavy slewing drive. According to the slewing drive’s power, size, dead weight, and application in different fields and machines to achieve its own functions, the light-duty slewing drive is light in weight, and its load and deceleration capabilities are suitable for high-speed (≥10rpm), vibration, impact loads, etc. Working conditions: The medium-sized slewing drive is suitable for high-speed (≥10rpm), vibration, impact load and other working conditions, and the heavy-duty slewing drive is suitable for high-speed (≤3rpm), heavy-duty, and intermittent working conditions.

4. Classification according to the structure of the drive composition

According to the composition of the drive device, it is divided into vertical drive and horizontal slewing drive. Vertical slewing drive means that the traction motor and the traveling wheel are vertical, and the traction motor is upright above the traveling wheel. It has the advantages of small gyration radius, high protection level, convenient maintenance, etc., but high manufacturing cost; horizontal drive means that the traction motor and the traveling wheel are parallel, and the traction motor is mostly coaxial with the traveling wheel and is horizontal. It has the advantages of compact structure, simplicity, and low installation height.

Application of slewing drive

SE Series Slewing Drive

After understanding what the slewing drive is, let’s take a look at its specific application. The slewing reducer can be used in the occasions that require full-circle rotation and variable speed requirements. When it is necessary to achieve larger torque power transmission, higher precision motion transmission, or the selection of a mechanism with a compact body structure and a higher requirement for integration, the slewing drive Is a good solution.

1. The field of beam transport vehicles

The core components of the traditional beam truck slewing assembly mostly use traditional slewing ring products. Compared with the slewing drive, the slewing ring does not have an outer shell, and the corrosion resistance is not ideal, and hydraulic cylinders are used to drive the steering of the tires. In terms of the system, the rotation angle range of the tire is also greatly restricted. The selection of a slewing drive device as a slewing component can not only improve the corrosion resistance of the component, but also increase the steering angle of each group of tires.

2. The field of aerial work vehicles

Aerial work trucks are an important application area of ​​slewing drive. Generally, high-altitude work trucks require the host to have a higher safety factor. The high safety of slewing drive (self-locking of worm gears) is the majority of users choose it as an aerial work platform accessory On the other hand, the worm gear transmission has a larger transmission speed ratio, so that while improving the safety factor of the main engine, a set of worm gear reducers can also be omitted for the main engine, thereby reducing the manufacturing cost of the main engine.

3. The field of photovoltaic power generation

Photovoltaic power generation is an important application field of slewing drive. Solar photovoltaic modules with slewing drive as a rotating part can accurately adjust the rotation and elevation angle of the host according to the different positions of the sun during the day. The solar panels are always in good condition. Receiving angle.

4. Wind power generation

Similar to photovoltaic power generation, the slewing drive can be applied to the yaw part of the wind generator to realize the horizontal 360° rotation of the mechanism, so as to better adjust the receiving angle.

5. The field of construction machinery claws

Construction machinery auxiliary equipment is a new application field of slewing drive. The slewing drive is used as the claw of the rotating mechanism, which makes the design structure more concise, which is more conducive to use and maintenance. At the same time, the worm gear drive has a larger reduction ratio, which makes the claws, etc. The positioning accuracy of construction machinery aids has also been greatly improved.

6. The field of industrial robots

Due to the compact structure and short transmission chain, the slewing drive is easier to achieve higher accuracy and easier to carry out digital control, so it is also widely used in the field of industrial robots. Recently, robots derived from AGV (mobile robots), spot welding robots, welding robots, arc welding robots, laser processing robots, vacuum robots, clean robots and other varieties have slewing drive applications.

Causes and solutions of common failures of slewing drive devices

In the current transmission mechanism, the application range of slewing drive is very wide, including the application of products such as high-altitude lifting platforms, fire trucks, marine cranes, and log transfer machines. In a complex application environment, the slewing drive device will inevitably fail due to various reasons. The editor below has sorted out some common faults and solutions of the slewing drive device and hopes to be helpful to everyone.

Common causes of failures of slewing drive devices

Spur Gear Drive

1. Rotary drive string shaft

(1) Shaft tandem caused by broken teeth causing the input shaft to lose its axial restraining force;

(2) The slewing drive driven gear is not tightly fastened to the shaft, resulting in insufficient bearing interference, resulting in a series of shafts, and the steering problem of the slewing drive is affected;

(3) Gear machining deflection;

(4) Gear helix angle error;

(5) Tooth thickness error, uneven wear of tooth surface and premature wear, deformation of tooth back.

The rotary drive oil temperature is too high

(1) The lubricating oil used by the rotary drive is unqualified or has been used for too long;

(2) Too much lubricating oil is used in the rotary drive;

(3) Damage to the slewing drive components, including severe pitting of gears, broken teeth, damage to the bearing cage, inner and outer rings, balls, as well as bearing seizure or severe shaft deformation;

(4) The outside of the rotary drive is covered by debris or dust. When things are piled around or the surface of the machine body has not been cleaned for a long time, the cover of debris or dust may cause incomplete heat dissipation of the reducer and increase the oil temperature;

(5) The cooling device fails or is blocked. If the cooling device is blocked or the cooling device is broken due to long-term work without cleaning the internal pipeline, it will cause the temperature of the rotary drive oil to rise;

(6) Overload operation of rotary drive.

Oil leakage of rotary drive

The oil leakage of the slewing drive: the driving shaft seal ring, the driven shaft seal ring, the slewing drive box, the sight hole cover, the oil drain hole at the bottom, and the oil leakage of the breather. Possible reasons include the fixing bolts are not tightened; there is iron filings on the joint box surface and the closure is not tight; the rotary drive housing is deformed and does not fit tightly and leaks oil; or the ventilator has too much oil.

The slewing drive is overheated or there is noise in the bearing part

(1) Insufficient lubricating oil. When the lubrication oil level is insufficient or the reducer cannot reach a reasonable height due to oil leakage, it may cause high temperature or noise in the bearing part of the reducer;

(2) The bearing cap or seal part is rubbed. When the bearing cover or the sealing part and the connecting part are worn due to improper installation, improper bearing cover or long-term use, the bearing temperature of the reducer may be high or there may be noise;

(3) The bearing is damaged or worn. This item mainly includes damage to the cage of the bearing, wear or deformation of the inner and outer rings, wear or fall of the balls, these reasons will make the reducer unable to work normally;

(4) The bearing clearance is too large or too small. The above symptoms may be caused when the gap between the ball of the reducer bearing and the inner and outer rings, the gap between the bearing inner ring and the shaft, and the gap between the bearing and the end cover increase due to long-term use;

(5) The key handle of the helical gear is loose. The looseness of the helical gear key handle will cause the lack of tight fit between the gear and the shaft, resulting in overheating or noise in the bearing;

Large vibration of the rotary drive body

The possible reasons for the vibration of the slewing drive body include: the anchor screw is loose; the coupler is damaged; the motor screw is loose; the bearing is severely worn; the gear is damaged; the shaft is deformed and out of balance. These conditions may be due to loose screws or coupler failures, bearing wear and other reasons caused by long-term operation.

The bearing of the slewing drive device is broken

The slewing drive bearing cracks mainly occur in the driving shaft bearing. The main reason is that when the driving shaft moves, axial sliding will occur between the bearing inner ring and the rollers, causing the bearing inner ring to move axially, causing the inner bearing rollers to move first. Damage to the bearing.

Damage to the slewing drive gear

Rotary drives have different reasons for broken teeth, gear pitting, spalling, and wear. It can be roughly divided into insufficient contact fatigue strength of the gear; gear material defects, poor precision, inadequate lubrication, impurities in the lubricating oil, and errors in the center distance of the gears.

The slewing drive device has abnormal noise

Possible causes The reducer is overloaded; the load of the working machine is unbalanced; the lubricating oil is deteriorated; the gear tooth surface is worn or the manufacturing quality is poor; the bearing clearance is too large or too small; there is adhesion on the tooth surface; there is debris in the box.

After understanding the causes of common failures of the slewing drive device, the editor briefly introduces the repair methods of the slewing drive device failure. You can check the fault according to the specific situation. If you can’t solve it by yourself, you still need to contact the manufacturer for repair.

Solutions to common failures of slewing drive devices

1. Rotary drive string shaft

It can improve the strength and manufacturing accuracy of the gear, and reduce the roughness value of the gear and shaft. Improving the installation accuracy and tightness of the driven gear and the shaft is mainly to achieve a reasonable interference fit.

2. The rotary drive oil temperature is too high

(1) The staff can perform a detailed inspection on the actual load of the slewing drive and adjust it to the specified value, or it can be replaced with a larger power slewing drive.

(2) Use lubricating oil to remove excess oil in strict accordance with the prescribed amount of oil; or replace the lubricating oil.

(3) Remove the debris and dust around the rotary drive, replace the cooling device to remove the blockage.

3. Oil leakage of rotary drive

(1) The sealing ring gland adopts an open structure or an easily disassembled structure.

(2) Install gaskets and fastening bolts on the sight hole cover.

(3) The oil return hole at the input shaft bearing should be appropriately enlarged.

(4) Replace the deformed drive housing.

(5) Correctly install and correct the oil level of the ventilator.

(6) An annular oil groove is cast or machined on the box surface of the rotary drive base, and there are multiple oil return holes communicating with the annular oil groove. When the reducer is working, once the oil penetrates into the joint box surface, it will enter the annular oil groove, and then flow into the oil tank through the oil return hole, and the lubricating oil will not leak along the box surface to the outside of the reducer housing.

(7) Apply a layer of sealant (such as D05 silicone rubber sealant) on the surface of the box to effectively prevent oil leakage at the surface of the box.

(8) Improve the ventilation cap and inspection hole cover. The internal pressure of the reducer is greater than the external atmospheric pressure is one of the main reasons for oil leakage. If you try to balance the pressure inside and outside the machine, oil leakage can be prevented. Although the reducer has a vent cap, the vent hole is too small, and it is easy to be blocked by dust and oil. Moreover, the inspection hole cover must be opened every time the oil is refueled. Once opened, the possibility of oil leakage will increase once, so that the original place does not leak. Leaks also occurred. The vent hole can be enlarged to equalize the pressure inside and outside.

4. The slewing drive is overheated or there is noise in the bearing part

(1) Check the rotary drive oil level and add lubricating oil;

(2) Tighten the bolts of the bearing and the connecting part, and check the installation of the seal;

(3) Check the bearing and replace it immediately if it is damaged;

(4) If the clearance is not suitable, adjust the bearing clearance, and replace the bearing if it cannot be adjusted;

(5) If the key handle of the helical gear is loose, send it for repair in time;

5. The vibration of the rotating drive body is large

The fault can be eliminated by tightening the foot bolts and the loose screws of the motor; repairing the coupler; replacing the bearing; replacing the gear.

6. The slewing drive bearing is broken

Increase the interference between the inner ring and the shaft, or add a retaining ring on the outer side of the inner ring of the bearing to prevent axial movement.

7. Rotary drive gear damage

Gear damage can be strengthened or the viscosity of the regular lubricant can be used to reduce the loss of lubricant and prevent rust. Clean the gear to keep the surface free of impurities, replace the gear that cannot be repaired, and pay attention to daily maintenance.

8. The slewing drive device has abnormal noise

When there is abnormal noise, you can replace the new lubricant to adjust the bearing gap, check the bearing and do the cleaning work, or replace the new parts in time.

The above is the sorting and summary of the common failure causes and solutions of the rotary drive device. I hope it will be helpful to everyone.

Process flow and processing method of spur drive gear processing

Spur gear drive is a kind of gear reducer we often say. It is divided into spur gear and helical gear. Its working principle is mainly a reduction gear that drives the ring gear of the rotary drive to rotate through the pinion gear. So how much do you know about the technological process of gear processing for devices that use gears to complete the deceleration work? The following drive manufacturers will introduce to you the processing process and tooth profile processing methods of spur drive gears.

Machining process of spur drive gear

The processing process of spur drive gear includes: forging blank, normalizing, turning processing, gear shaving, hobbing, gear shaping, grinding processing, heat treatment, and trimming. The specific processes are as follows.

1. Forging billet

In recent years, hot die forging has been widely promoted in shaft processing, and is suitable for making blanks for more complex stepped shafts. It not only has high precision, small subsequent machining allowances, and high production efficiency.

Slewing Drive

2. Normalizing

The purpose of the normalizing process is to obtain a hardness suitable for subsequent gear cutting to reduce deformation. The material of the gear steel used is usually 20CrMnTi. The process is affected by factors such as equipment, environment, and workpiece cooling rate, and the hardness dispersion is large.

3. Turning

In order to meet the high-precision positioning requirements of gears, CNC lathes are used for gear blank processing to maintain the verticality requirements of the end face, outer diameter, and bore diameter, which can improve the precision of the gear blank and improve work efficiency.

4. Shaving

Radial gear shaving technology is widely used in the production of high-volume automobile gears due to its high efficiency, design tooth profile, and easy realization of tooth profile modification requirements.

5. Rolling and shaping

Common gear hobbing machines and gear shaping machines are still widely used for processing gears. Although it is easy to adjust and maintain, the production efficiency is low. If a large capacity is completed, multiple machines are required to produce at the same time. With the development of coating technology, the re-coating after sharpening of hobs and inserts is very convenient. Coated tools can significantly increase the service life, generally by more than 90%, effectively reducing the number of tool changes And sharpening time, the benefit is significant.

6. Grinding

It is mainly to finish the heat-treated gear inner hole, end face, shaft outer diameter and other parts to improve the dimensional accuracy and reduce the form and position tolerance. The gear processing technology adopts the pitch circle fixture to position and clamp, which can effectively ensure the processing accuracy of the tooth part and the installation datum, and obtain satisfactory product quality.

7. Heat treatment

Gears require carburizing and quenching to ensure good mechanical properties. For products that no longer need to be ground after being heated, stable and reliable heat treatment equipment is essential.

8. Trimming

This is the inspection and cleaning of the bumps and burrs of the gears before assembly of the transmission and gear drive to eliminate the abnormal noise caused by them after assembly. It is completed by listening to the sound of a single pair of meshing or observing the meshing deviation on a comprehensive inspection instrument.

SG-I Spur Gear Slewing Drive

Machining method of spur drive gear

The choice of spur drive tooth profile processing method mainly depends on the gear’s accuracy grade, structural shape, production type and production conditions. For gears of different accuracy grades, the commonly used tooth profile processing methods are as follows.

1. Gears below grade 8 accuracy

Hardened and tempered gears can meet the requirements with gear hobbing or gear shaping. For hardened gears, a machining plan of rolling (shaping) teeth-tooth end processing-quenching-correction hole can be used. However, the machining accuracy of the tooth profile should be improved by one level before quenching.

SG-H Spur Gear Slewing Drive

2. 6-7 grade precision gear

For hardened gears, the following can be used: rough hobbing-fine hobbing-tooth end machining-fine shaving-surface hardening-calibration reference-honing.

3. Gears with accuracy above grade 5

Generally used: rough gear hobbing-fine gear hobbing-tooth end machining-quenching-calibration standard-rough grinding gear-fine grinding gear. Gear grinding is currently a high-precision machining method in tooth profile machining with a small surface roughness value, and the accuracy can be as high as 3-4.

The above is the introduction about the processing process and processing methods of the spur drive gear. I hope it can help everyone to have a certain understanding of the processing of the drive gear.

What is a slewing drive? Classification and application of slewing drive

The rotary reducer is a rotary reducer with integrated driving power source. The rotary bearing is used as the main transmission part and the mechanism attachment. Its essence is a permanent magnet motor with large torque. This product is also called rotary reducer. Drive, compared with traditional rotary products, it has simple installation, easy maintenance, and saves installation space to a greater extent. It is mainly used in beam trucks, aerial work vehicles, industrial robots, photovoltaic power generation, wind power generation and construction machinery claws. Tools and other fields.

What is the slewing drive

Slewing Drive

1. Definition of slewing drive

The slewing drive device is also called a slewing reducer, a gear reducer, a turntable reducer, a slewing mechanism, and a slewing drive pair. They are all types of reducers that use slewing bearings as the main support, and the auxiliary drive source uses gears or worms as the driving parts, so as to realize the deceleration and full-circle slewing functions. The composition of the slewing drive mainly includes gears (or worms), slewing bearings, motors, housings, and bases. Slewing drive can be basically divided into single worm drive slewing drive, double worm drive slewing drive and special type of slewing drive.

2. Classification of slewing drives

Spur Gear Drive

(1) Classification according to transmission form

According to the variable transmission form of slewing drive, it can be divided into gear slewing drive and worm gear slewing drive, inheriting the characteristics of gear drive and worm gearing. These two slewing drives can be adapted to medium-high and low-speed applications respectively. In terms of carrying capacity, the performance of the worm gear type is better than that of the tooth type, and when the envelope worm transmission is adopted, its carrying capacity, anti-deformation ability and transmission rigidity are further improved, but the worm gear type rotary drive is more efficient in terms of efficiency. Inferior to the gear type slewing drive, the gear type slewing drive is divided into a straight tooth type slewing drive, a helical tooth type slewing drive, and a volute type slewing drive.

(2) Classification according to the openness of slewing drive

According to the openness of the slewing drive transmission mechanism, the slewing drive can be divided into open and closed. Generally, the open structure is mostly used in applications where the environment is too harsh and the maintenance and maintenance cycle is short. The open structure is more convenient for parts. The inspection, maintenance and maintenance of the product are also more convenient for replacement. However, the closed structure can provide a longer maintenance life cycle in occasions where the environmental conditions have not changed much and the environmental pollution level is below the medium level.

①Customized double-gear high-precision, negative-clearance precision helical (grinding) slewing drive, to achieve zero backlash for customers.

(3) Classification according to driving power

According to the structure operation type of the slewing drive, it can be divided into light slewing drive, medium slewing drive and heavy slewing drive. According to the slewing drive’s power, size, dead weight, and application in different fields and machines to achieve its own functions, the light-duty slewing drive is light in weight, and its load and deceleration capabilities are suitable for high-speed (≥10rpm), vibration, impact loads, etc. Working conditions: The medium-sized rotary drive is suitable for high-speed (≥10rpm), vibration, impact load and other working conditions, and the heavy-duty rotary drive is suitable for high-speed (≤3rpm), heavy-duty, and intermittent working conditions.

(4) Classification according to the drive composition structure

According to the composition of the driving device, it is divided into vertical drive and horizontal slewing drive. Vertical slewing drive means that the traction motor and the traveling wheel are vertical, and the traction motor is upright above the traveling wheel. It has the advantages of small gyration radius, high protection level, convenient maintenance, etc., but high manufacturing cost; horizontal drive means that the traction motor and the traveling wheel are parallel, and the traction motor is mostly coaxial with the traveling wheel and is horizontal. It has the advantages of compact structure, simplicity, and low installation height.