How many degrees can the slewing bearing temperature generally not exceed? Solutions for overheating

The temperature of the slewing bearing directly reflects whether the bearing is running normally. If the bearing temperature is too high, it may directly reflect that there may be some kind of failure in the bearing, which directly affects the performance of the machine. So how many degrees can the slewing bearing temperature generally not exceed?

Under normal circumstances, the temperature of the slewing bearing should not exceed 70℃, because the allowable temperature of the lubricating grease of the slewing bearing should be less than 80℃. Let’s take a look at the normal temperature range of the slewing bearing and how to solve the problem if the temperature is too high.

slewing bearing

1. The normal range of slewing bearing temperature

The temperature of the slewing bearing is mainly limited by the heat-resistant temperature of the bearing steel, cage, sealing material and lubricant, and in general, the working temperature of the slewing bearing should not be higher than 95 ℃. The aforementioned slewing bearing temperature should not exceed 70°C is calculated based on the grease life. If the operating temperature increases by 15°C, the grease life will be reduced by half. Among the heat-resistant temperature limits of several materials that affect the temperature of the slewing bearing, the heat-resistant temperature of the grease is lower, so this is the upper limit.

The normal working temperature that ordinary bearings can withstand is between 40 degrees Celsius and 70 degrees Celsius, but the ideal working temperature of slewing bearings should be in the range of 40-60 degrees Celsius. The slewing bearing used in the low temperature environment can be used in the vacuum environment. The selection of the low temperature bearing does not affect the working performance of the bearing, and it can also be used normally at minus 60 ℃.

Surface temperature of slewing bearing: When the bearing is running under the specified working conditions, the temperature of the outer surface of the built-in bearing should not be higher than the temperature of the conveying medium by 20℃, and the upper limit of the temperature should not be higher than 80℃. The temperature rise of the outer surface of the externally mounted bearing should not be higher than the ambient temperature by 40°C. The temperature is not higher than 80℃.

The ambient temperature of the turntable: the temperature rise of the bearing shall not exceed the ambient temperature of 35°C, and the upper limit of the temperature shall not exceed 75°C.

After understanding how many degrees the slewing bearing temperature cannot generally exceed, let’s take a look at how we can solve the problem when the slewing bearing temperature is too high.

Slewing Bearings

2. The solution to the high temperature of the slewing bearing

A high temperature often indicates that the bearing is in an abnormal state. High temperatures are also detrimental to bearing lubricants. Sometimes bearing overheating can be attributed to the lubricant in the bearing. If the bearing is continuously rotated for a long time at a temperature exceeding 125°C, the service life of the bearing will be reduced. Factors that cause high temperature bearings include: lack of lubrication or too much lubrication, lubricants. There are impurities inside, the load is too large, the bearing ring is damaged, the clearance is insufficient, and the high friction caused by the oil seal, etc. The solution to the high temperature of the slewing bearing:

(1) Adjust the amount of grease injected

Too much or too little grease will lead to abnormal bearing temperature. Too little bearing grease will not be able to lubricate the bearing, which will cause internal wear of the bearing and cause temperature rise. At the same time, too much bearing grease will also cause abnormal heating of the bearing. Therefore, the injection amount of bearing grease should be adjusted.

(2) Replace the grease

The mixing of different types of grease may cause the grease to deteriorate and agglomerate, which will affect the lubrication effect and cause the bearing to heat up. If the grease is polluted by external dust, it may also destroy the bearing lubrication and cause the temperature to rise. The suitable bearing grease should be replaced in time. , and do a good job of bearing moisture-proof and dust-proof measures.

(3) Overhaul the cooling system

If the pipeline of the bearing is blocked, the oil inlet temperature and return water temperature exceed the standard, or the cooler is not suitable for the cooling effect, the bearing temperature will be too high. At this time, it should be replaced in time or a new cooler should be installed in parallel. The axial flow induced draft fan should also check the insulation and sealing of the core cylinder.

(4) Check the coupling

If none of the above problems exist, the coupling needs to be checked. The thermal expansion of the equipment during operation should also be considered when aligning the axial-flow induced draft fan and the hydraulic coupler. The impeller side of the induced draft fan expands due to heat, and the bearing box rises; during the operation of the hydraulic coupling, the temperature rises, the bearing box expands, and the bearing rises, so the motor should be higher when aligning, and the size of the reserved amount depends on the characteristics of the equipment and Depends on the operating temperature parameters.

The above is the reason why the bearing temperature is too high. By measuring the bearing temperature, it can also help us to find out the possible problems of the bearing in time. Therefore, it is necessary to continuously detect the bearing temperature, whether it is to measure the bearing itself or other key parts. If the operating conditions do not change, all temperature changes can indicate a failure.

What are the surface treatment processes for slewing bearing fasteners? How to choose?

We all know that slewing bearings also need fasteners. Fasteners are widely used mechanical parts for connecting and fixing mechanical equipment and various parts. They are suitable for all walks of life. Due to their standardization, series, and degree of generalization higher, we also call a type of fasteners that meet relevant standards as standard fasteners, also called standard parts. Let’s take a look at the surface treatment process and commonly used materials of slewing bearing fasteners.

Surface treatment process of slewing bearing fasteners

Slewing Bearings

1. Electro-galvanized

The surface of electro-galvanized is black and military green. It is a commonly used coating for commercial fasteners. It is cheap and prone to hydrogen embrittlement during the production process. Generally, bolts above grade 10.9 are generally not galvanized. The consistency of the tightening force is poor and unstable, and it is generally not necessary to connect in important parts.

2. Oxidation and blackening

How is the blackening treatment of the slewing bearing made? Blackening + oiling is a very popular coating for industrial fasteners, and the price is cheap. However, the holding time is short, and the neutral salt spray test can only reach 3 to 5 hours in the presence of oil, and it will rust soon if there is no oil. Moreover, the consistency of torque and pre-tightening force of the oxidized black parts is poor. If it needs to be improved, grease can be applied to the inner thread during assembly and then screwed together.

3. Electroplating chrome

Electroplating chrome is relatively stable in the atmosphere, with good wear resistance, high hardness, and not easy to change color. , chrome-plated fasteners will be used only when the strength of stainless steel is not sufficient to meet the fastening needs.

4. Silver plated nickel plated

Silver plating can prevent corrosion and can lubricate fasteners at the same time. Due to the high cost, silver plating is generally only used for nuts, not bolts. Silver is easy to oxidize, so it is easy to lose its luster in the air, but it works at 1600 degrees in Chinese style, so silver-plated parts are often used in high temperature environments.

Nickel-plated fasteners have good anti-corrosion and electrical conductivity, and are often used in locations where electrical conductivity is required, such as the terminal of vehicle batteries.

5. Electroplating cadmium

Cadmium coating has good corrosion resistance, especially in marine atmospheric environment, the corrosion resistance is better than other surface treatments. The cost price is 15-20 times that of electro-galvanizing, and the cost is relatively high. Generally, it is only used in special industries such as oil drilling platforms and fasteners for HNA aircraft, which require high anti-corrosion performance.

6. Zinc

Sherardizing is a solid metallurgical thermal diffusion coating of zinc powder. Its uniformity is good, and a uniform layer can be obtained in the thread and blind hole. The thickness of the coating is 10~110μm, and the error can be controlled within 10%. Its bonding strength with the substrate and anti-corrosion performance are in the zinc coating, and it is pollution-free and harmless during processing.

slewing bearings

How to choose slewing bearing fasteners

As the slewing bearing fasteners used in ordinary equipment, ordinary electro-galvanized and oxidized black treatment can meet the needs; if there are requirements for the hardness and wear resistance of fasteners or working temperature, silver-plated or electro-chromic processes can be selected ; If the working environment humidity is high and the anti-corrosion performance of the fasteners is required, the Dacromet, zinc galvanizing, and cadmium electroplating processes can be selected; if the conductive performance of the fasteners is required, the nickel-plated process fasteners can be selected.

The specific characteristics and advantages of the surface treatment process of the above slewing bearing fasteners have been introduced clearly. You can make a reasonable choice according to the environmental requirements of the adapted machinery and the characteristics of the equipment.

Why should slewing bearings be annealed? Annealing purpose and process type

Why should slewing bearings be annealed? In fact, slewing bearing slewing bearing annealing is a process of bearing heat treatment. Generally, the bearing metal is heated to a certain temperature and maintained for a period of time, and then the metal is cooled at a suitable speed. This method improves the toughness of bearing steel. , Reduce the bearing hardness and residual stress to reduce the probability of deformation and cracks, and enhance the stability of the bearing material.
​​
Why should slewing bearings be annealed?

Slewing Bearings​​
The purpose of slewing bearing annealing may be for three reasons:
​​
1. The annealing process can reduce the hardness of the bearing steel, improve the plasticity, and facilitate the later cutting and deformation processing.
​​
2. Annealing can refine the grains of the bearing material, eliminate the structural defects caused by the casting, forging and welding of the bearing, uniform the structure and composition of the steel, and improve the performance of the steel to prepare for the later heat treatment.
​​
3. The annealing process can eliminate the internal stress in the steel and prevent or reduce the possibility of deformation and cracking of the bearing. In one case, the annealing process is not only for the annealing of metallic materials but also for non-metallic materials. After understanding why slewing bearings should be annealed, the following editor will introduce the types of annealing processes for slewing bearings. In fact, there are many types of annealing processes, and the processes applicable to different steel structures are also different.

Type of annealing process for slewing bearing


​​
1. Recrystallization annealing

Recrystallization annealing, also called full annealing, is an annealing process in which the iron-carbon alloy is austenitized and then slowly cooled or stopped in a near-equilibrium state. The heating temperature of carbon steel is generally Ac3+ (30~50℃); alloy steel is Ac3+(500~70℃); the holding time depends on the type of steel, the size of the workpiece, the amount of furnace installed, the selected equipment model, etc. factors are determined. In order to ensure that the supercooled austenite undergoes pearlite transformation, the cooling of the recrystallization annealing must be slow, and the furnace is cooled to about 500 ℃ and air-cooled.

This annealing process is mainly used for hypoeutectoid steel, generally medium carbon steel and low and medium carbon alloy structural steel forgings, castings and hot-rolled profiles, and sometimes for their welded components; it is not suitable for hypereutectoid steel, Because the recrystallization annealing of hypereutectoid steel needs to be heated to above Acm, during slow cooling, cementite precipitates along the austenite grain boundaries and is distributed in a network, resulting in increased brittleness of the material, leaving hidden dangers for heat treatment.

2. Uniform annealing

Uniform annealing, also known as diffusion annealing, is to reduce the segregation of the chemical composition of the metal casting or forging billet and the inhomogeneity of the structure. It is heated to a high temperature, kept for a long time, and then slowly cooled to homogenize the chemical composition and structure. Purpose of the annealing process. The heating temperature of the homogenization annealing is generally Ac3+ (150-200 ℃), that is, 1050-1150 ℃, and the holding time is generally 10-15h, in order to ensure that the diffusion is fully carried out, and the purpose of eliminating or reducing the uneven composition or structure is large. Due to the high heating temperature, long time and coarse grains of diffusion annealing, recrystallization annealing or normalizing should be performed after diffusion annealing to re-refine the structure.

3. Incomplete annealing

Incomplete annealing is an annealing process in which the iron-carbon alloy is heated to a temperature between Ac1 and Ac3 to achieve incomplete austenitization, followed by slow cooling. Incomplete annealing is mainly suitable for medium and high carbon steel and low alloy steel forgings and rolling parts. Its purpose is to refine the structure and reduce the hardness.

4. Stress relief annealing

One of the key reasons why slewing bearings should be annealed is the annealing process to eliminate residual stress caused by plastic deformation processing, welding, etc. and existing in the casting. There is internal stress inside the workpiece after forging, casting, welding and cutting. If it is not eliminated in time, the workpiece will be deformed during processing and use, affecting the accuracy of the workpiece. It is very important to use stress relief annealing to eliminate the internal stress generated during processing.

5. Isothermal annealing

Isothermal annealing is to heat the steel or blank to a certain temperature and hold it for a period of time, then quickly cool it to a certain temperature in the pearlite temperature range and keep it isothermally, so that the austenite is transformed into a pearlite-type structure, and then in the air. Medium cooling annealing process.

This process is suitable for medium carbon alloy steel and low alloy steel, and its purpose is to refine the structure and reduce the hardness. The heating temperature of hypoeutectoid steel is Ac3+(30~50)℃, and the heating temperature of hypereutectoid steel is Ac3+(20~40)℃, keep it for a certain period of time, and carry out isothermal transformation with furnace cooling to slightly lower than Ar3 temperature, and then air-cooled. . The isothermal annealing structure and hardness are more uniform than the crystallization annealing.

6. Spheroidizing annealing

Spheroidizing annealing is an annealing process to spheroidize carbides in steel. It is heated to 20-30°C above Ac1, kept for a period of time, and then slowly cooled to obtain the structure of spherical or granular carbides uniformly distributed on the ferrite matrix.

Spheroidizing annealing is mainly used for hypereutectoid steel and alloy tool steel (such as cutting tools, measuring tools, molds and bearings, etc. all steel grades). Its purpose is mainly to reduce hardness, improve machinability, and prepare for subsequent quenching. There are many spheroidizing annealing process methods, and the two commonly used processes are ordinary spheroidizing annealing and isothermal spheroidizing annealing. Compared with ordinary annealing methods, spheroidizing annealing can not only shorten the cycle, but also make the spheroidized structure uniform, and can strictly control the hardness after annealing.

7. Recrystallization annealing

Recrystallization annealing is also called intermediate annealing. It is a heat treatment process in which the metal after cold deformation is heated to above the recrystallization temperature and maintained for an appropriate time to recrystallize the deformed grains into uniform equiaxed grains to eliminate deformation strengthening and residual stress.

The above is the introduction of the reasons why the slewing bearing needs to be annealed. It also includes the types of annealing processes and their respective characteristics and process introductions. I hope to help you have a clearer understanding of the annealing process. In addition, our company produces slewing bearings, slewing bearings, and slewing drives of various types and precisions. If you have any needs, please feel free to inquire.

How is the spur gear drive packaged? Packaging method and function

Spur gear drive, as a general-purpose reducer that integrates the functions of rotation, deceleration, and drive, can use the transmission structure to achieve a transmission with a large transmission ratio, which reduces the failure rate of the host to a certain extent. It is usually modular and highly integrated. After the assembly is completed, special attention should be paid to storage and transportation of this device to avoid impacts or other conditions that affect its function. For this reason, the product should be packaged.

How is the spur gear drive packaged

1. Packaging method

(1) Cleaning and assembly: clean each part after passing the inspection to remove dirt and impurities on the surface, and then assemble the parts and assemble them into a complete rotary drive.

(2) Lubrication: Inject grease into the rotary drive through the oil injection hole, and wipe the surface after the entire rotary drive is qualified to ensure the smoothness of the surface.

(3) Anti-rust: Paint anti-rust oil on the outer surface of the slewing drive, especially the slewing bearing as the main transmission component, should be fully lubricated and anti-rust work to prevent rust during storage or transportation. Of course, during the production process, the manufacturer will also spray and other special anti-rust treatments on the spur drive housing. After the anti-rust oil is applied, it should be packed in time to isolate the air to achieve a better anti-rust effect.

(4) Outer packaging: put the packed straight gear reducer in a wooden box, pay attention to the protection of the inner wall of the wooden box, generally put a layer of pearl cotton on the bottom of the box to prevent the rotary drive from scratching in the wooden box, and use pearl cotton around Separate the wooden box from the drive and try to fill the gap to avoid shaking and bumping during transportation. If you want to stack it, you need to use a wooden strip to isolate and support between the two rotary drives to prevent the upper product from compressing the lower product. In addition, the upper layer of the wooden box should be laid with pearl cotton to prevent the product from being scratched when the lid is opened and nailed. At the same time, fix the outer packaging and prevent moisture.

Spur Gear Drive

2. Matters needing attention

(1) Choose suitable lubricating grease and anti-rust oil according to the characteristics of the product. It should be appropriate, not too much or too little.

(2) Avoid stacking multiple products if possible, and protect a single product to avoid damage such as stacking collisions, extrusion deformation, etc.

(3) A suitable packing box should be customized according to the size of the product, which can greatly reduce the damage caused by extrusion or shaking due to the mismatch of the box and the product. At the same time, pay attention to whether the packing box is strong.

(4) During the transportation process, attention should be paid to moisture-proof and stable transportation, to avoid the impact of external environment such as bumping into water.

Slewing Drive

The role of spur gear drive packaging

1. Product protection: Tight packaging can better protect the products. The spur gear drives produced are all qualified products that have been inspected. However, if they are transported or stored, they will inevitably experience some violent transportation or accidents. If the packaging is not In place, it may cause damage to the product. In order to deliver the product to the customer intact, tight packaging is necessary.

2. Convenient storage: Sometimes customers don’t use the spur gear drive immediately after purchasing it, and may need to be stored for a period of time, so the anti-rust treatment of the product packaging box is particularly important.

3. Transportation protection: It is inevitable that the product will be directly loaded and unloaded by forklift during transportation, and bumps will inevitably occur. The use of strong outer packaging can play a certain protective effect and play a pre-protective role against some uncontrollable conditions during transportation.

4. Manufacturer’s information display: The outer packaging is not only to protect the product but also to display the company’s image. Good standardized packaging reflects the manufacturer’s standardized production and good production management system, and is also a display of the manufacturer’s strength. At the same time, product information such as the product model, inspection certificate, and instructions for use will also be displayed on the outer packaging, so that the process of receiving and transportation can be more clearly and intuitively distinguished.

Causes and Preventive Measures of Quenching Soft Spots of Slewing Bearings

In the production process of the slewing bearing, the hardness of the steel ring is locally lower after the quenching process, which usually occurs after the quenching. This situation is called the quenching soft point, and when the pieces appear, it is called the quenching soft belt. The location where the soft spot occurs is that the bearing has low hardness, which will affect the quality of subsequent grinding. Fatigue damage is also prone to occur during use, which affects the service life of the bearing. So what is the reason for the quenched soft spot of the slewing ring?

Reasons for the soft spot of slewing bearing quenching

1. Decarburization: When the metal is heated in the furnace or the atmosphere in the furnace is not good, it is easy to cause decarburization. The process of decarburization is that the carbon element in the bearing steel reacts with clear or oxygen at high temperature to generate methane or carbon monoxide. This situation will reduce the surface carbon content and the hardness to meet the requirements.

2. Insufficient temperature: Insufficient heating temperature and insufficient heat preservation make the bearing material matrix not fully austenitized. After quenching, it cannot completely transform into martensite, resulting in local soft spots. In addition, the local cooling rate is too low, the bearing surface has bubbles or contaminants, or the critical cooling rate is not reached in the close contact of the workpiece, and it cannot all become martensitic.

3. Uneven steel structure: If the original structure of the workpiece material used in the production of the bearing is not uniform, such as carbide segregation, carbide aggregation, etc., it will affect the quenching effect of the bearing.

4. Inductor problem: The structure of the inductor and the positioning fixture during quenching are not good, which affects the heating effect, or the center line of the spray cooling hole on the inductor and the quenched surface are perpendicular or angled improperly, resulting in uneven heating, heating, and cooling. The situation arises. In addition, the unequal spacing between the bearing and the inductor can also cause uneven heating.

5. Poor hardenability: The material of the slewing bearing is made of steel with poor hardenability, such as carbon steel. However, if the cross section of the workpiece is large or the thickness difference is large, soft spots may appear at the large cross section.

6. Poor quenching medium: the cooling rate of the quenching medium is low or too old will cause soft spots in the bearing.

After understanding the reasons for the soft spots or soft bands of the slewing bearing, the method to improve the existing soft spots can be through annealing, normalizing, and high temperature tempering, followed by re-quenching according to the normal process, or re-quenching after recarburizing. Or, after quenching, the hardness can be improved by cold treatment, and then tempering treatment will try to solve it. So how do we avoid the recurrence of quenched soft spots in the subsequent bearing production and processing process?

Slewing Bearings

Measures to prevent the occurrence of soft belts on slewing bearings

1. Reasonable material selection: pre-homogenize the defective steel before quenching to remove the problems of carbide segregation and aggregation.

2. Control the heating temperature and time: For insufficient austenitization due to insufficient heating temperature and time, we need to select the appropriate heating temperature, heating time, and holding time for the steam during processing.

3. Reasonable selection of quenching medium: strengthen the relative movement between the workpiece and the medium, or stir the medium to keep the quenching medium clean. Quenching of carbon steel in salt water can effectively prevent the generation of soft spots.

4. Strictly follow the process: perform the quenching operation correctly, correctly control the pre-cooling time, the residence time in water or brine during quenching, the residence time in water or brine during dual-medium quenching, and the residence time of graded quenching.

The above is the reason for the soft spot of slewing bearing quenched by Lunda editor and the measures to prevent the soft band. I hope it can be helpful to everyone. The soft spots of the bearing have an impact on the later grinding process and performance of the bearing. I hope everyone will pay attention to it.

Why should the slewing bearing be pickled? Pickling process

In our production process, the process of cleaning and degreasing the metal parts and soaking them in an acid solution is usually called pickling. Bearings also need to be pickled, so why should slewing bearings be pickled?

There are two main purposes, one is to remove oxide scale or burrs on the metal surface by pickling, and the other is to pickling to check metal surface defects to see if there is burn corrosion. The editor of Lunda will introduce to you the specific operation process of slewing bearing pickling.

The purpose of pickling of slewing bearings

slewing bearings

1. Surface purification: Use pickling or chemical cleaning to clean the bearing surface, such as pickling before electroplating, pickling before phosphating, pickling to remove oxide skin burrs, etc. Use pickling liquid to choose cold pickling or hot pickling according to the condition of the metal surface. It is widely used to remove oxide scale on the surface of the cage.

2. Pickling inspection: Use pickling to check the bearing surface defects, which is called pickling inspection or burn corrosion. It is a kind of detection method, commonly used in cold pickling with nitric acid. If the metal surface has cracks, decarburization, peeling, burns and other defects, it can be manifested by cold pickling. In foreign countries, this pickling inspection technology is often classified into the NDT (no inspection) method. Most domestic factories use this inspection method to detect the presence of surface defects.

According to different application purposes, processing requirements and different raw materials, select the correct pickling technology and use the appropriate pickling process (including the selection of acid solution, corrosion inhibitor, process steps, pickling time, etc.), and a special The pickling staff conduct operations and inspections to ensure the pickling effect and the quality of the bearing products. Let’s take a look at the operation process of pickling with Ronda editor.

The process flow of slewing bearing pickling

slewing bearings

1. Preparation before pickling: the bearing parts need to be cleaned before pickling, and the surface should not be dirty with oil, magnetic powder, dust, etc.; if the surface is severely rusted, it needs to be derusted and then pickled.

2. The pickling process:

(1) Put the bearing into a metal cleaner solution for soaking. The concentration of the solution is required to be 4%~5%, and the temperature should be controlled at 75~90℃. If it is pickling, use normal temperature water to dilute the solution. The soaking time is not less than 1 minute.

(2) During the process, the bearing should be shaken or moved to make it fully contact with the solution, and the solution should be kept clean, and the pickling time should be controlled within 5 minutes.

(3) Rinse the soaked bearing in flowing cold water and cool it to room temperature.

3. Inspection after pickling: Check the appearance of the bearing. Its surface should be consistent silver gray or light gray. Generally, the burned position will appear black or bright white, the soft spot position will be dark gray or black, and the decarburized position will be off-white. During the inspection process, the bearing surface is not allowed to be wiped. If in doubt, use absorbent cotton dipped in ethanol or anti-rust solution to wipe.

Slewing Bearings

After the inspection is completed, the bearing should be sent to the anti-rust process in time for treatment to avoid re-oxidation and corrosion of the surface.

3. Precautions for pickling of slewing bearings

1. During the pickling process, the operation should be carried out strictly in accordance with the process sequence, and the process sequence should not be randomly selected.

2. Keep Lingshui flowing and clean during the pickling process and avoid turbidity.

3. The whole process should be carried out under the conditions of good ventilation and safety protection.

4. When replacing the pickling solution, the cleaning tank needs to be cleaned, rinsed with clean water 2-4 times and then the solution is prepared.

5. When preparing the diluted solution, pour the concentrated acid into water or alcohol and keep stirring. If there is solid, stir the solid first and then add the concentrated acid. It is forbidden to pour water into the concentrated acid, which is prone to splashing or danger. accident.

The above is a specific introduction on why the slewing bearing should be pickled and the pickling process. I hope to help everyone better understand the purpose and meaning of pickling. At the same time pickling can help the bearing achieve better performance

Why should the slewing bearing be annealed?

Why should slewing bearings be annealed? In fact, annealing of slewing ring bearings is a process of bearing heat treatment. Generally, the bearing metal is heated to a certain temperature and kept for a period of time, and then the metal is cooled at a suitable speed. This method improves the toughness of the bearing steel. , Reducing bearing hardness and residual stress can reduce the probability of deformation and cracks, and enhance the stability of bearing materials.

Why should the slewing bearing be annealed?

There may be three reasons for the purpose of annealing the slewing bearing:

1. The annealing process can reduce the hardness of the bearing steel, improve the plasticity, and facilitate the later cutting and deformation processing.

2. Annealing can refine the grains of bearing materials, eliminate structural defects caused during bearing casting, forging, and welding, and uniform the structural structure and steel composition of the steel, which can improve the performance of the steel and prepare for the later heat treatment.

3. The annealing process can eliminate the internal stress in the steel and prevent or reduce the possibility of deformation and cracking of the bearing. In one case, the annealing process is not only for metal materials but also for annealing of non-metal materials. After understanding why slewing bearings should be annealed, the following editor will introduce the types of annealing processes for slewing bearings. In fact, there are many types of annealing processes, and different steel structures are suitable for different processes.

Annealing process type of slewing bearing

Slewing Bearings

1. Recrystallization annealing

Recrystallization annealing is also called full annealing, which is an annealing process in which iron-carbon alloys are austenitized and then slowly cooled or close to equilibrium. The heating temperature of carbon steel is generally Ac3+ (30~50℃); alloy steel is Ac3+ (500~70℃); the holding time depends on the type of steel, the size of the workpiece, the amount of furnace installed, the selected equipment model, etc. The factors are determined. In order to ensure that the undercooled austenite undergoes the pearlite transformation, the cooling of the recrystallization annealing must be slow, and the furnace is cooled to about 500°C and then air-cooled.

This annealing process is mainly used for hypoeutectoid steels, generally medium-carbon steel and low- and medium-carbon alloy structural steel forgings, castings and hot-rolled sections, and sometimes also used for their welding components; it is not suitable for hypereutectoid steels, Because the recrystallization annealing of hypereutectoid steel needs to be heated to above Acm, during slow cooling, cementite will precipitate along the austenite grain boundary and present a network distribution, which will increase the brittleness of the material and leave hidden dangers for heat treatment.

2. Uniform annealing

Uniform annealing is also called diffusion annealing, in order to reduce the segregation of the chemical composition of metal castings or forging billets and the unevenness of the structure. It is heated to a high temperature, maintained for a long time, and then slowly cooled to homogenize the chemical composition and structure. Purpose of annealing process. The heating temperature of homogenization annealing is generally Ac3+ (150~200℃), that is, 1050~1150℃, and the holding time is generally 10~15h to ensure the full progress of diffusion and the purpose of eliminating or reducing the uneven composition or organization. Because the heating temperature of diffusion annealing is high, the time is long, and the crystal grains are coarse, for this reason, recrystallization annealing or normalizing is performed after diffusion annealing to re-fine the structure.

Slewing Bearings

3. Incomplete annealing

Partial annealing is an annealing process in which the iron-carbon alloy is heated to a temperature between Ac1 and Ac3 to achieve partial austenitization, followed by slow cooling. Partial annealing is mainly suitable for medium and high carbon steel and low alloy steel forgings, etc. Its purpose is to refine the structure and reduce the hardness. The heating temperature is Ac1+ (40-60) ℃, and the temperature is slowly cooled after heat preservation.

4. Stress relief annealing

One of the key reasons why slewing bearings should be annealed is the annealing process in order to eliminate the residual stress caused by plastic deformation processing, welding, etc. and the residual stress in the casting. There are internal stresses in the workpiece after forging, casting, welding and cutting. If it is not eliminated in time, the workpiece will be deformed during processing and use, which will affect the accuracy of the workpiece. It is very important to use stress relief annealing to eliminate internal stress generated during processing.

5. Isothermal annealing

Isothermal annealing is to heat the steel or blank to a certain temperature and keep it for a period of time, and then quickly cool it to a certain temperature in the pearlite temperature range and keep it isothermally, so that the austenite is transformed into a pearlite structure, and then in the air Cooling annealing process. This process is suitable for medium carbon alloy steel and low alloy steel, and its purpose is to refine the structure and reduce the hardness. The heating temperature of hypoeutectoid steel is Ac3+(30~50)℃, and the heating temperature of hypereutectoid steel is Ac3+(20~40)℃. Keep it for a certain period of time, and then perform isothermal transformation with furnace cooling to slightly lower than Ar3 temperature, and then air cooling out of the furnace . The isothermal annealing structure and hardness are more uniform than recrystallization annealing.

6. Spheroidizing annealing

Spheroidizing annealing is an annealing process to spheroidize carbides in steel. Heat it to 20-30°C above Ac1, keep it for a period of time, and then slowly cool it to obtain a structure of spherical or granular carbides uniformly distributed on the ferrite matrix.

Spheroidizing annealing is mainly used for hypereutectoid steel and alloy tool steel (such as cutting tools, measuring tools, molds, bearings and other steel grades). The main purpose is to reduce the hardness, improve the machinability, and prepare for later quenching. There are many spheroidizing annealing process methods, and the two commonly used processes are ordinary spheroidizing annealing and isothermal spheroidizing annealing. Compared with ordinary annealing methods, spheroidizing annealing can not only shorten the cycle, but also make the spheroidized structure uniform, and can strictly control the hardness after annealing.

7. Recrystallization annealing

Recrystallization annealing is also called intermediate annealing. It is a heat treatment process in which the cold-deformed metal is heated to a temperature above the recrystallization temperature and kept for an appropriate time to recrystallize the deformed grains into uniform equiaxed grains to eliminate deformation strengthening and residual stress. .

The above is an introduction to the reasons why slewing bearings should be annealed, which also includes the types of annealing processes and their respective characteristics and process introductions. I hope to help everyone have a clearer understanding of the annealing process.

How to judge the operating status of the slewing drive? Common faults and solutions

Slewing drives are widely used due to their modular installation convenience, operational stability, load-bearing capacity and strong environmental adaptability, etc., to improve industrial production efficiency and accelerate the realization of industrial automation. Then, once a failure occurs during the operation of the equipment, it may affect the normal production plan. For this reason, we should pay attention to the operation of the equipment and make timely judgments.

Judgment method of slewing drive operating state

SE Series Slewing Drive

1. Pay attention to the backhaul gap

During the operation of the equipment, observe the clearance of the rotary reducer during the return stroke, and judge the return clearance of the drive by the instant forward and reverse operation mode during operation. Refer to the theory of the type of rotary reducer corresponding to the instruction manual provided when the drive is purchased. The return gap can be used to judge whether the running state is normal.

2. Listen to the running sound

Normal equipment operating sounds are different from abnormal sounds. How to determine the operating status of the slewing drive can start from identifying the abnormal sounds. For abnormal noises or irregular sounds during operation, it is necessary to judge whether the reducer is in normal operation. If there are abnormal sounds, it should be repaired in time to determine the damage location and repair it.

3. Observe the operating temperature

If the slewing drive has abnormal temperature, there may be problems with overload operation or bearing wear and abnormal voltage, but these are usually not directly reflected from the operating state when the equipment is running, so we can judge by the temperature of the drive during operation. If the temperature is too high, it needs to be overhauled in time.

If all the above conditions are normal after running for more than 30 minutes, it means that the rotary reducer is in good working condition and can be used with confidence. So, the following editor introduces some common faults of rotary reducers for reference only.

Common faults and solutions of slewing drive

S Series Slewing Drive

1. The motor does not rotate: the motor does not rotate. Eliminate power failure and poor switch contact. There may be problems such as abnormal voltage, gear damage, overload operation, coil breakage, etc. You need to check the power supply, wiring, voltage, capacitor or directly contact the manufacturer for repair.

2. Abnormal heating: Abnormal heating of the drive may be caused by overload operation, abnormal voltage, bearing wear, etc. It is necessary to reduce the load and frequency of use, confirm whether the voltage is normal and perform maintenance.

3. Noise: The noise of the rotary reducer may have bearing damage, gear wear, or foreign matter jamming, and it needs to be disassembled and repaired by the manufacturer’s service personnel. Or there is lubricating oil contaminated or lack of lubricating oil, it should be supplemented or replaced in time.

4. Abnormal vibration: abnormal vibration caused by loose screws or wear of gears and bearings requires screw progress or replacement and maintenance of gear bearings.

5. Oil leakage: There are reasons such as loose screws or damage to the sealing ring, and the screws should be replaced or tightened in time.

The above are several judgment methods of Lunda editor on how to judge the running status of the slewing drive, as well as the common faults and solutions of the equipment. I hope it will be helpful to everyone. In the daily use of the reducer, you should pay attention to the running status of the equipment and find the problem in time. Repairs to prevent the deterioration of the problem from affecting production.

How to install the slewing drive? Installation method and process

The installation of the slewing drive device directly determines its fluency during the operation of the machine and the probability of failure during use. Improper installation may cause damage to it and affect its service life. Therefore, the installation is very important for the slewing drive. I don’t know how much you know about how to install the slewing drive.

Slewing drive installation tool

1. Auxiliary tools for hardware removal and installation such as wrenches, pliers, bolt tighteners, etc.;

2 Cleaners such as diesel, banana water, gasoline, etc.;

3. Scraper (used to clean up impurities on the supporting surface);

4. Feeler gauge, used for measurement in the later installation process;

HSE-2

Preparation before installation

1. Before installation, confirm whether the motor and the slewing drive are intact, and check whether the dimensions of the parts connected to the slewing drive match.

2. Screw on the screw on the dust-proof hole on the outside of the rotary drive flange, adjust the PCS system clamping ring to align the side hole with the dust-proof hole, and insert the inner hexagon to tighten. Then remove the motor shaft key.

3. Before installation, wipe the motor input shaft, positioning boss and the anti-rust oil at the connection part of the reducer with gasoline or zinc-sodium water.

4. Clean the impurities on the support surface (for example, iron filings, burrs, paint, welding slag, etc.).

5. Clean the anti-rust oil on the mounting surface of the rotary reducer.

6. Remove the transportation bolts.

Installation method

1. Fix the rotary reducer on the bracket with bolts, and install flat washers and spring washers on the bolt heads. The rotary reducer should be installed without load.

2. In order to avoid internal stress and installation problems caused by tightening the bolts, please add thread fastening glue to the threads; pre-tightened bolts and washers should be tightened crosswise; starting from the inner or outer ring, all bolts will be diagonal Tighten to 30% of the tightening torque, then tighten the diagonal to the tightening torque of the angle of 30%, and then tighten the diagonal to the mounting bolt, and do not leak. If the bolts cannot be fixed with bolts under structural constraints, the bolt holes must be sealed.

3. If filled with silica gel, it will leak water and dust into the rotary reducer. The installation bolts should consider the thread engagement length, which should not be too long, otherwise it will affect the rotation. Support rotation or cause interference; after tightening the bolt, mark the bolt head and its joint to facilitate future inspection of whether the bolt is loose.

SE Series Slewing Drive

The specific installation process

1. Clean the mounting bracket, remove welding slag, zinc plating residue, etc.;

2. Fix the bracket and the rotary reducer with bolts, and the bolt heads should be equipped with flat washers and spring washers;

3. The rotary reducer should be installed under no load.

4. Add thread fastening glue to the thread;

5. The pre-tightened bolts and washers should be tightened crosswise; the bolt tightening sequence is shown in the figure below; starting from the inner ring or outer ring, all bolts are tightened diagonally to 30% tightening torque, and then repeated diagonally to 50 % Tightening torque, tighten diagonally to 100% tightening torque.

6. The installation bolts are all on top, and no missing installation is allowed. If the bolts cannot be installed due to structural restrictions, the bolt holes must be sealed, such as filled with silica gel, otherwise water and dust will leak into the rotary reducer;

7. The thread engagement length should be considered for the installation bolts, and should not be too long, otherwise it will affect the rotation of the slewing ring or cause interference;

8. After the bolts are tightened, please mark the bolt heads and the joints, which is convenient for checking whether the bolts are loose in the future;

9. Repainting: During the installation of the rotary reducer, it will inevitably cause surface paint bumps and damage. Therefore, after the system is assembled, the rotary reducer needs to be repainted to improve the anti-rust and anti-corrosion capabilities.

After reading the installation method of the slewing drive and the specific installation process, everyone should have a certain understanding of how to install the slewing drive, so let’s take a look at some of the work after the slewing drive is installed.

Maintenance, inspection and lubrication after installation

1. Maintenance and inspection

After the initial assembly is used for about 100 hours, it is necessary to re-tighten the bolts to the specified tightening torque; this inspection needs to be carried out once a year. Under special operating conditions, the number of inspections is relatively reduced. After the bolts are loosened, please replace all bolts, nuts and washers immediately.

2. Lubrication

Lubrication of rotary reducer: The important parts of the product have been lubricated before leaving the factory. We will decide whether to add lubricating ester according to the actual situation during installation. The slewing ring raceway has been filled with grease before leaving the factory; the worm and the slewing ring need to be refilled with grease before use; the tapered roller bearing has been filled with grease before leaving the factory.

HSE Slewing Drive Gearbox

Installation precautions

1. Installation plane

The surface on which the rotary drive is installed should be kept smooth and clean, and the excess materials on it, such as paint residue, welding beads, burrs, etc., should be cleaned. At the same time, the installation surface should be dry and free of lubricant. Specifically, it is necessary to keep the mounting surface roughness of the mounting support not greater than Ra=12.5, 6.3μm. In order to avoid the unevenness of the mounting surface or the deformation of the support causing local overload of the rotary drive, the circumferential flatness error is within any range of 180 degrees. There can only be one wave ups and downs inside, and the changes are gentle.

2. The stiffness of the support

Standard slewing drive and zero-clearance slewing drive have different requirements for the rigidity of the support. Therefore, during installation, a support with corresponding rigidity should be selected according to the specific rotary drive.

3. Positioning

Both the inner and outer ring raceways of the slewing drive have a soft belt, which should be placed on both sides of the main load plane. That is 90 degrees staggered from the main load zone. There is a blockage or “S” mark on the soft belt. In addition, check the fit between the rotary drive and the mounting surface, usually with a feeler gauge. If the fit is not good, fill it with appropriate materials. It is forbidden to weld on the support after the rotary drive is installed.

4. Fastening bolts

Use the specified bolts, and do not use full-threaded bolts, do not use old bolts, nuts and washers, and prohibit the use of open washers such as elastic washers.

After reading this article, I believe that everyone has a certain understanding of how to install the rotary drive. During the installation process, the installation process and precautions must be strictly followed. At the same time, do not forget to check after the installation is completed.

What is the installation process of spur gear drive?

Slewing drive is divided into spur gear slewing drive and worm gear slewing drive. Spur gear slewing drive is also called spur gear drive, gear slewing drive, and gear slewing reducer. Its main applications include solar and wind power generation equipment, robots, radar, low-speed heavy-duty lifting, lifting equipment, precision CNC turntables and other products.

Application principle of spur gear drive

Spur gear drive is a full-circle reduction transmission mechanism that inherits the driving power source. Its working principle is to use all levels of gear transmission to achieve the purpose of speed reduction. The spur gear slewing drive uses a slewing ring as a drive follower and a mechanism attachment. By attaching a driving part and a driving source to one of the inner and outer rings of the slewing ring And the cover, and the other ring is used as the driving follower and the connecting base of the driven working part. In this way, the slewing bearing itself is a full-circle slewing connector, and the driving power source and main transmission parts are configured. Rotary drive is such a general-purpose reduction transmission mechanism that integrates the functions of rotation, speed reduction and driving.

Installation method of spur gear drive

1. Open the package of the slewing drive, check the certificate and label, and confirm that the type of slewing drive used is correct.

2. Make sure to install under no-load conditions, and level the installation position after keeping the surface of the equipment clean.

3. After leveling, install the rotary drive on the equipment support using a wrench, and level the equipment again. The circumferential flatness error can only have one wave ups and downs within any range of 180 degrees, and the change is gentle.

4. Position the equipment and place the soft belts on the inner and outer ring raceways of the slewing drive on both sides of the main load plane. That is 90 degrees staggered from the main load zone. There is a blockage or “S” mark on the soft belt.

5. Tighten up after positioning, use a feeler gauge to measure the fit between the rotary drive and the mounting surface. If the fit is not good, fill it with appropriate materials.

6. Adjust the gear backlash. Use a feeler gauge to measure and adjust the gear radial runout point. If the backlash is not within the specified value, move the pinion to change the center distance, and mark the gear radial runout point in the tooth groove with green paint. .

7. After installation, lubricate the supporting slewing drive, including raceways and gears. In order to ensure sufficient lubrication, the grease specified in the drawing or product instruction manual should be refilled before the first use.

Installation precautions

1. Before installation, confirm whether the motor and gear slewing drive are intact, and check whether the dimensions of the parts connected to the slewing drive match.

2. Screw on the screw on the dust-proof hole on the outside of the rotary drive flange, adjust the PCS system clamping ring to align the side hole with the dust-proof hole, and insert the inner hexagon to tighten. Then remove the motor shaft key.

3. Before installation, wipe the motor input shaft, positioning boss and the anti-rust oil at the connecting part of the speed reducer with gasoline or zinc-sodium water.

4. After the rotary drive is installed, it can be turned by hand, and the application is flexible without jamming. Before starting the machine, fix the connecting screws. The no-load test run should be no less than 2 hours, and the operation should be stable, without impact, vibration, noise and oil leakage. If found, it should be eliminated in time. When using, check whether the fasteners are loose. Ensure normal operation.

5. Naturally connect the motor and the reducer. When connecting, it must be ensured that the output shaft of the reducer and the input shaft of the motor are concentric, and the outer flanges of the two are parallel, so as to extend the service life and obtain the ideal transmission efficiency and comparison. Low noise. In addition, do not hit with a hammer during installation to prevent excessive axial or radial force from damaging the bearings or gears. Be sure to tighten the mounting bolts before tightening the tightening bolts.

The above is the whole content of the spur gear drive application principle, installation method and precautions. Spur gear drives can be used in fields that require high precision such as CNC machine tools and military radars. If you have any questions during the installation or use of the spur gear drive, please call for consultation or leave a message.