How to Ensure the Reliability of Slewing Bearings in Medical Equipment

Ensuring the reliability of bearings in medical equipment requires comprehensive consideration from multiple aspects, including material selection, precision requirements, lubrication and sealing, cleaning and sterilization, quality control and inspection, as well as reliability design and life assessment. Each link has a significant impact on the performance and reliability of the bearings. Only by strictly controlling these factors can we guarantee the safe and stable operation of medical equipment and provide high – quality medical services to patients.

What are Slewing Bearings in Medical Equipment?

Slewing bearing for medical equipment are key mechanical components used in medical devices. They mainly function to connect and support rotatable parts, enabling the equipment to achieve smooth and precise slewing motion. For example, in large – scale imaging diagnostic equipment such as CT scanners and magnetic resonance imaging (MRI) machines, the slewing support ensures the stable rotation of the scanning components, accurately obtaining images of different angles of the human body, which helps doctors make accurate diagnoses. It features high precision to guarantee the accuracy of equipment operation, high load – bearing capacity to support heavy components of the equipment, and excellent reliability and durability, reducing equipment failures and maintenance costs. It is of great significance for the normal operation of medical equipment and diagnostic accuracy.

Material Selection

Biocompatibility:For slew bearings in medical equipment that come into direct or indirect contact with the human body, the biocompatibility of the material is of utmost importance. Medical – grade stainless steel, for instance, has good strength and corrosion resistance, and it causes minimal irritation to human tissues. Titanium alloy has even more advantages. Not only does it have excellent biocompatibility, but it also has a low elastic modulus, which can better match human bones and reduce the stress – shielding effect. Ceramic materials such as alumina and zirconia ceramics, in addition to good biocompatibility, have extremely high hardness and wear resistance, which can effectively reduce the generation of wear particles and minimize potential harm to human tissues. In addition, some biocompatible polymer materials are also applied to specific medical bearings, as they possess good flexibility and chemical stability.

Corrosion Resistance:The medical environment contains various corrosive substances, such as hydrogen peroxide and chlorine – containing disinfectants used for disinfection. The bearing material must have excellent corrosion resistance to prevent surface corrosion. For example, nickel – based alloys are used in some medical equipment bearings with high corrosion – resistance requirements due to their good anti – corrosion properties. Even when in long – term contact with corrosive substances or in a humid environment, these materials can maintain the integrity and performance of the bearings, avoiding problems such as increased surface roughness and dimensional changes caused by corrosion, thus ensuring the reliability of the bearings.

Mechanical Properties:Different medical equipment has varying requirements for the mechanical properties of bearings. In high – load medical equipment such as large – scale radiotherapy equipment, the bearings need to withstand huge weights and dynamic loads. Therefore, the material is required to have high strength and toughness to prevent fracture or deformation during operation. For some high – precision diagnostic equipment, such as the fine – tuning mechanism bearings of optical microscopes, in addition to a certain strength requirement, more emphasis is placed on the hardness and wear resistance of the material to ensure that it can achieve precise micro – displacement adjustment and maintain accuracy during long – term use.

Precision Requirements

Dimensional Accuracy:The dimensional accuracy of bearings in medical equipment directly affects the overall performance of the equipment. For example, in the joint parts of surgical robots, the dimensional tolerances of the inner and outer diameters of the bearings usually need to be controlled within a few microns to ensure the motion accuracy of the robotic arm. If the dimensional accuracy is insufficient, it may lead to joint looseness or poor movement, affecting the accuracy of surgical operations. Similarly, in some precision medical testing instruments, the width accuracy of the bearings also needs to be strictly controlled to ensure their fit accuracy with other components, enabling stable operation and accurate measurement.

Rotational Accuracy:For medical equipment that relies on high – speed rotation to function, such as CT scanners and centrifuges, the rotational accuracy of the bearings is crucial. Take high – end CT scanners as an example. The bearings of their rotating parts need to ensure that the radial and axial run – outs during high – speed rotation are controlled within the micron level. This can ensure that the relative positions of the X – ray source and the detector remain precisely unchanged, thus obtaining high – quality scan images. If the rotational accuracy does not meet the standard, problems such as blurred and distorted images will occur, affecting doctors’ accurate judgment of the condition.

Lubrication and Sealing

Lubrication Method:Selecting the appropriate lubrication method and lubricant is one of the key factors in ensuring the reliability of bearings. For some low – speed and light – load medical equipment bearings, grease lubrication is a commonly used method. High – quality lubricating grease has good adhesion and lubrication performance, which can form a uniform oil film on the bearing surface, reducing friction and wear. For high – speed and heavy – load bearings, such as those in the transmission systems of some large – scale medical equipment, oil mist lubrication or circulating oil lubrication may be adopted to provide better heat dissipation and lubrication effects. At the same time, the lubricant must meet medical safety standards, be non – toxic, odorless, and have good chemical stability, and should not deteriorate or produce harmful substances during long – term use.

Sealing Design:A reliable sealing structure is crucial for preventing lubricant leakage and the entry of external contaminants into the bearings. In medical equipment, common sealing methods include mechanical seals and lip seals. For example, in some medical equipment that needs to operate in a sterile environment, a double – sealing structure is used. This can not only effectively prevent lubricant leakage from contaminating the environment but also prevent external bacteria, dust, etc. from entering the inside of the bearings, ensuring that the bearings operate in a clean environment. In addition, the selection of sealing materials is also crucial. They should have good aging resistance and chemical corrosion resistance to adapt to different medical environments and working conditions.

Cleaning and Sterilization

Cleanability:The structural design of the bearings should facilitate cleaning, avoiding complex shapes and hard – to – reach corners to prevent the accumulation of dirt and bacteria. For example, a smooth surface design can be adopted to reduce surface roughness, making it difficult for contaminants to adhere. At the same time, during the installation and maintenance of the bearings, strict cleaning procedures should be developed, and special cleaning tools and cleaning agents should be used to ensure the cleanliness of the bearing surface and interior. For some disassemblable bearings, they should be regularly disassembled and cleaned to remove internal impurities and wear particles.

Sterilization Compatibility:Medical equipment needs to be strictly sterilized before use, and the bearings must be able to withstand common sterilization methods. High – temperature and high – pressure steam sterilization is a common sterilization method. The bearing materials and structures need to maintain stable performance in a high – temperature and high – pressure environment and should not deform or crack. Although ethylene oxide sterilization causes less damage to the equipment, the bearing materials also need to have good tolerance to ethylene oxide and should not be affected in performance due to the absorption of ethylene oxide. Gamma – ray sterilization requires that the bearing materials have good radiation stability and should not change in performance under the action of radiation.

Quality Control and Inspection

Production Process Control:During the production process of bearings, strictly controlling various process parameters is the basis for ensuring product quality. From the melting and forging of raw materials to mechanical processing, heat treatment, and other links, parameters such as temperature, pressure, and processing speed need to be accurately controlled. For example, during the forging process, an appropriate forging ratio can make the internal structure of the material more compact, improving the strength and toughness of the bearings. In the heat treatment process, precisely controlling the heating temperature and cooling rate can enable the bearings to obtain the desired metallographic structure and hardness, thus ensuring the consistency and stability of their performance.

Stringent Inspection:Comprehensive inspection of bearings through various inspection methods is an important measure to ensure their reliability. Visual inspection can detect defects such as cracks and sand holes on the bearing surface. Dimensional accuracy measurement uses high – precision measuring tools, such as coordinate measuring machines, to accurately measure various dimensions of the bearings to ensure they meet the design requirements. Hardness testing can check whether the hardness of the bearing material is within the specified range to ensure its wear resistance and strength. Rotational performance testing uses special equipment to simulate the rotation of the bearings in actual operation and detect parameters such as rotational accuracy and friction torque. Only bearings that meet all the indicators can be used in medical equipment.

Reliability Design and Life Assessment

Redundancy Design:For some critical medical equipment, such as extracorporeal circulation equipment used in heart surgery, to ensure the safe operation of the equipment in case of bearing failure, a redundant bearing design can be adopted. That is, multiple bearings are installed to share the load. When one bearing fails, other bearings can temporarily replace it, buying time for equipment maintenance and replacement and avoiding endangering the patient’s life due to bearing failure and equipment shutdown.

Life Assessment:The service life of bearings in specific medical equipment is evaluated through theoretical calculations and actual simulation tests. Theoretical calculations are based on parameters such as the bearing load, rotation speed, and working temperature, and methods such as fatigue life theory are used to predict its life. The actual simulation test is to simulate the working environment of medical equipment in the laboratory and conduct long – term operation tests on the bearings, observing their wear, fatigue, and other conditions to more accurately evaluate their actual service life. According to the life assessment results, a reasonable maintenance and replacement plan is developed to ensure that the bearings always maintain reliable performance during the equipment operation.

The Price of Slewing Bearings for Medical Equipment

The price of slewing supports for medical equipment is affected by many factors. The material is the foundation. Slewing supports made of high – quality steel have high strength, good toughness, and excellent wear resistance, which can ensure the long – term stable operation of medical equipment, and their prices are relatively high. If ordinary materials are used, although the cost is reduced, the performance and durability may be compromised. The manufacturing process is also crucial. Advanced and precise processes can strictly control the dimensional accuracy and surface roughness. The slewing supports produced by such processes have better performance and naturally come at a higher price. While products produced by simple processes may have a price advantage, there may be potential problems in terms of quality and reliability.

Supplier of Slewing Bearings for Medical Equipment

LDB bearing is also outstanding in terms of service. The company has established a complete pre – sales, in – sales, and after – sales service system to provide customers with comprehensive and one – stop services. Before sales, a professional technical team will communicate in – depth with customers to understand their actual needs and provide customers with personalized product solutions. During sales, the production progress is strictly controlled in accordance with the production management system to ensure on – time product delivery, and the product quality is strictly inspected, with each processing step being tested.